DISEÑO Y EVALUACIÓN DE UN BIOFILTRO A BASE DEL MUSGO BLANCO SPHAGNUM MAGELLANICUM PARA MEJORAR LA CALIDAD DE AGUA DE USO DOMÉSTICO EN COMUNIDADES RURALES

Shadia Farah Paz Majluf

TESIS PARA OPTAR EL TITULO DE LICENCIADA EN BIOLOGÍA

Lima – Perú
2019
Jurado Calificador

Presidenta: Dr. Magdalena Pavlich Herrera

Secretario: Mg. Luis Huamán Mesia

Vocal: Dr. Armando Valdés Velásquez
Asesor de Tesis

Dr. Raúl Augusto Loayza Muro
Agradecimientos

A mi asesor el Dr. Raúl Loayza por el apoyo y dirección para poder concluir este trabajo de investigación con satisfacción y orgullo.

A la empresa Inka Moss S.A.C quien financió mi proyecto a través de Innóvate Perú y me proporcionó todos los insumos e implementos necesarios para la realización de la investigación.

A mis padres por siempre haberme apoyado en mi elección de carrera, por incentivarme a seguir mis pasiones y por enseñarme a mejorar cada día.
INDICE GENERAL

INDICE DE TABLAS .. 7
INDICE DE FIGURAS ... 8
RESUMEN ... 10
1. INTRODUCCIÓN .. 12
2. MARCO TEÓRICO ... 14
 2.1 Situación del abastecimiento de agua en el Perú ... 14
 2.2 Calidad de agua en el Perú .. 19
 2.3 Métodos convencionales de tratamiento del agua ... 24
 2.4 Biofiltración .. 26
 2.5 El musgo: ecología y distribución .. 27
 2.6 Aplicaciones del musgo .. 29
3. HIPÓTESIS .. 31
4. OBJETIVOS .. 31
 4.1 Objetivo Principal ... 31
 4.2 Objetivos Específicos ... 31
5. MATERIALES Y MÉTODOS .. 31
 5.1 Área de estudio .. 31
 5.2 Diseño del Estudio ... 33
 5.3 Diseño y elaboración del biofiltro ... 33
 5.4 Análisis de la calidad del agua: eficiencia del biofiltro .. 36
 5.5 Análisis de Datos ... 39
6. RESULTADOS .. 40
 6.1 Parámetros fisicoquímicos ... 40
 6.2 Parámetros microbiológicos ... 40
 6.3 Análisis de Metales .. 43
INDICE DE TABLAS

Tabla 1. Número de filtros y volumen de los reservorios de los centros poblados muestreados.

Tabla 2.- Media (± D.E.) de los análisis fisicoquímicos durante las dieciocho semanas de muestreo en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO).

Tabla 3.- Cálculo del porcentaje de disminución de bacterias entre semanas en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzancuvatziari y San José de la Florida (FLO).

Tabla 4.- Cálculo del porcentaje de disminución de metales entre semanas en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzancuvatziari y San José de la Florida (FLO).

Tabla 5.- Contribuciones de las variables fisicoquímicas, microbiológicas y metales a los dos primeros componentes principales (PC) del ACP de las aguas de los reservorios A y C del Centro Poblado de Tzancuvatziari y San José de la Florida.
INDICE DE FIGURAS

Figura 1.- Población (%) por departamento que consume agua con nivel de cloro adecuado (≥ 0.5 mg/L) proveniente de red pública en 2017. ... 15

Figura 2.- Población (%) que consume agua proveniente de red pública entre febrero 2017 y enero 2018... 16

Figura 3.- Población rural (%) que consume agua proveniente de red pública entre febrero 2017 y enero 2018.. 16

Figura 4.- Población rural (%) que consume agua según condición de potabilidad proveniente de la red pública, 2013 – 2017.. 17

Figura 5.- Entidades Prestadoras de Servicios de Saneamiento ... 18

Figura 6.- Distribución nacional del recurso hídrico. .. 19

Figura 7.- Niveles de pH... 22

Figura 8.- Fuentes de contaminación por metales pesados en aire, suelo, agua y planta. 23

Figura 9.- Mapa de la ubicación de los Centros Poblados muestreados... 32

Figura 10.- *Sphagnum magellanicum* Britt (musgo blanco) a) Conglomerado de musgos en vida silvestre, b) Musgo blanco de la especie de *Sphagnum magellanicum* c) Longitud promedio del musgo (8-10cm). .. 34

Figura 11.- Proceso de manufactura del musgo blanco de la empresa Inka Moss S.A.C. a) Colecta del musgo del campo y limpieza b) Camas de secado c) Musgo en proceso de secado d) Musgo seco listo para prensar e) Prensa hidráulica f) Musgo prensado y empaquetado.................. 35

Figura 12.- Biofiltro de musgo *Sphagnum magellanicum* de cinco (05) cartuchos. 35

Figura 13.- Biofiltros instalados en los reservorios de a) Tzancuvatziari (cinco cartuchos) y b) de San José de la Florida y Santa Rosa de Cashingari (un cartucho). ... 36

Figura 14.- Muestra de agua para análisis microbiológicos de Tzancuvatziari A. 37

Figura 15.- Muestras de agua para análisis de metales totales a) Rotulado de los frascos b) Adición de HNO3 a las muestras c) Registro de datos d) Muestras de Tzancuvatziari A. 38

Figura 16.- Concentración de coliformes totales en el experimento a en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (50 NMP/100 mL)... 41
Figura 17.- Concentración de coliformes totales en el experimento b en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (50 NMP/100 mL)... 41

Figura 18.- Concentración de coliformes fecales en el experimento a en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (20 NMP/100 mL)... 42

Figura 19.- Concentración de coliformes fecales durante el experimento b en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (20 NMP/100 mL)... 43

Figura 20.- Concentración de Al en el reservorio del CP Santa Rosa de Cashingari (CASH). La línea verde indica el ECA (0.9 mg/L).. 45

Figura 21.- Análisis de Componentes Principales (ACP) de variables fisicoquímicas, microbiológicas y de metales en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzancuvatziari y San José de la Florida (FLO). Los números al lado de cada punto representan la semana de muestreo. El ACP le atribuye a cada variable un ‘peso’ relativo sobre cada componente, que se representa como flechas que apuntan en la dirección de mayor influencia sobre las estaciones de monitoreo. Cuanto más larga la flecha, mayor la influencia... 46
RESUMEN

El Perú carece de sistemas de potabilización de agua en muchas regiones de la sierra y la selva, lo que genera un problema latente de salud en la población. Por ello, la implementación de metodologías de saneamiento de agua, de bajo costo y fácil acceso, son requeridas con urgencia. El musgo blanco *Sphagnum magellanicum*, que crece en los Andes del Perú, posee propiedades bactericidas, bacteriostáticas y de retención de metales pesados, por lo que elaborar un filtro eficiente a partir de este insumo sería ventajoso y conveniente. En este estudio, evaluamos si el musgo blanco *S. magellanicum* posee la capacidad de mejorar la calidad de agua de uso doméstico mediante la reducción de metales y carga bacteriana en reservorios de centros poblados de Satipo. Los resultados mostraron una reducción de la carga de coliformes totales y fecales, colocando los valores por debajo del Estándar de Calidad Ambiental de Perú. También hubo una reducción de hierro y aluminio, por debajo de los valores de los estándares requeridos para consumo humano. Son requeridos más estudios con este tipo de filtro para comprobar su efectividad frente a otros agentes contaminantes.

Palabras clave: musgo, Sphagnum, biofiltro, coliformes, potabilización.
ABSTRACT

Perú lacks effective water purification systems in great parts of the highlands and the Amazon region, generating a health problem in the population. Therefore, there is an urgent need for low cost and easy access water sanitation methodologies. The white moss *Sphagnum magellanicum*, that grows in the Andes of Peru, has bactericidal, bacteriostatic, and heavy metal retention properties, which make it a good water filter. In this study, we evaluate whether the *S. magellanicum* moss has the capacity to improve the quality of potable water by reducing metal and bacterial loads in the reservoirs of towns near Satipo. The results showed a reduction of the total and fecal coliform loads, placing the values below the Environmental Quality Standards of Perú. There was also a reduction in the amounts of iron and aluminum, below the standard values required for human consumption. More studies are needed with this type of filter to assess effectiveness against other pollutants.

Keywords: moss, sphagnum, biofilter, coliforms, metals, potabilization.
1. INTRODUCCIÓN

El agua es un bien estratégico e indispensable en toda sociedad; es esencial no solo para el desarrollo de una vida digna sino también para el manejo adecuado de la salud pública y la economía de un país \(^1\).

El Perú es rico en recursos hídricos, cuenta con más de 150 cuencas hidrográficas y posee el 70% de los glaciares tropicales del mundo \(^2\). Sin embargo, tanto la disponibilidad como la calidad del agua potable presentan limitaciones en la costa, sierra y selva, especialmente en las zonas rurales. Esto es debido a un déficit en los sistemas de potabilización, abastecimiento doméstico y tratamiento de aguas residuales. En muchos casos la calidad del agua de consumo es crítica debida a la presencia de materiales en suspensión o en solución, de origen orgánico (bacterias, parásitos, deshechos de animales muertos, etc.) e inorgánico (cloruros, sulfatos, carbonatos de sodio, plaguicidas, metales, etc.) que provienen de fuentes naturales o antrópicas.

Las aguas son inocuas cuando no contienen ninguna sustancia contaminante, que pueda suponer un peligro para la salud humana. Sin embargo, para que el agua sea considerada apta para el consumo humano debe cumplir con una serie de requisitos de carácter microbiológico y fisicoquímico. La Organización Mundial de la Salud (OMS) indica que si bien existen algunos parámetros de control internacionales para determinar la calidad de agua, cada país tiene su propia normativa que puede diferir en forma y fondo de otros países, y dentro del mismo entre regiones \(^3\).

En el Perú, esto se rige por el Estándar de Calidad Ambiental (ECA) de Agua elaborado por el Ministerio del Ambiente (MINAM), que determina los parámetros mínimos indispensables de inocuidad del agua para consumo y uso doméstico.

En la actualidad existe una gran variedad de tecnologías para potabilizar el agua; los sistemas más convencionales usan las llamadas “estaciones de tratamiento”, que combinan tratamientos físicos y químicos con una infraestructura especializada para cada proceso \(^4\). Este sistema es utilizado, actualmente, por 51 plantas de tratamiento de agua potable en el Perú \(^5\). Sin embargo, estos métodos convencionales no son los mejores en la zona rural, donde el precio, la complejidad de implementación y la accesibilidad limitan su puesta en funcionamiento y mantenimiento.

En paralelo, se ha venido desarrollando las llamadas tecnologías verdes de filtración de agua, las cuales implementan el uso de insumos biológicos, que reemplazan los productos químicos, y
sistemas simples que puedan ser implementados por los mismos pobladores. A estos filtros se les conoce como biofiltros, y son, actualmente, una de las alternativas más eficientes de purificación de agua para consumo humano \(^6\). Un ejemplo de los insumos que usan los biofiltros son las especies vegetales, como el musgo blanco del género de *Sphagnum*, propio del Perú, el cual presenta propiedades antibacterianas y antisépticas, así como la capacidad de retener metales \(^7\). Esto lo convierte en un candidato de interés para el diseño de dispositivos filtradores para el mantenimiento y tratamiento en reservorios de agua de uso doméstico en la zona rural del país.

Tomando en cuenta lo anterior, este proyecto tiene como objetivo el diseño de un prototipo de biofiltro a base del musgo blanco *Sphagnum magellanicum* como alternativa para el tratamiento de agua de uso doméstico en zonas rurales del Perú. Este instrumento combinará tecnologías de filtración de agua y recursos biológicos nativos del Perú, que son producidos, comercializados y exportados por comunidades rurales. Esta es una primera aproximación en la búsqueda de soluciones “verdes” para el problema de la contaminación del agua en las zonas rurales del Perú. Si los resultados del estudio determinan que *S. magellanicum* posee la capacidad de mejorar la calidad de agua de uso doméstico mediante la reducción de metales y carga bacteriana, se abriría una oportunidad para evaluar aspectos de explotación del recurso natural, su procesamiento, producción y comercialización.
2. MARCO TEÓRICO

2.1 Situación del abastecimiento de agua en el Perú

Actualmente, el Perú se encuentra en una situación de precariedad ante la falta de sistemas de abastecimiento de agua. Según los datos más recientes del Instituto Nacional de Estadística e Informática (INEI) y la Autoridad Nacional del Agua (ANA) que se registran en el informe “Perú: Formas de Acceso al Agua y Saneamiento Básico”(8) del 2018, en el periodo febrero 2017 - enero 2018 el porcentaje de la población que tuvo acceso a agua para consumo humano proveniente de una red pública (dentro de la vivienda, fuera de la vivienda pero dentro del edificio, o pilón de uso público) fue del 89.4% (28 347 000), mientras que el 10.6% restante de la población no tuvo acceso a agua por red pública. Esto significa que 3 364 000 personas usaron otras formas de abastecimiento de agua, como ríos, acequias, pozos, camión-cisterna, entre otros. Para un mejor entendimiento, si hacemos una separación por áreas tendríamos que:

- Área urbana: del 100% de personas, el 94.4% tiene acceso a una red pública y el 5.6% no.
- Área rural: del 100% de personas, el 71.9% tiene acceso a una red pública y el 28.1% no.

Sin embargo, el acceso a una red pública de agua no significa que ésta llegue debidamente desinfectada y lista para el consumo doméstico. Por ejemplo, del porcentaje total de la población que consume agua de una red pública, solo al 48.2% (14 731 431 personas) de la población le llega el agua con algún nivel de cloración (≥ 0.5 mg/L) y de este porcentaje, solo el 33.3% consume agua con un nivel de cloración adecuado (≥ 0.5 mg/L). Si esto lo separamos por zonas tenemos que, en el área urbana el 42.9% de la población consume agua con un nivel adecuado de cloro, mientras que en el área rural solo el 9.2% goza de este servicio. La Figura 1(8) muestra la población (%) por departamento que consume agua con un nivel de cloro adecuado proveniente de red pública en 2017. Se aprecia que solo cinco departamentos (Tacna, Moquegua, Madre de Dios, Arequipa y Lima) cuentan con un nivel de cloración adecuado, siendo Lima un caso particular, donde solo la Provincia Constitucional del Callao y los 43 distritos de la Provincia de Lima cuentan con niveles adecuados de cloración.
Nota: Red pública, incluye agua dentro de la vivienda, fuera de la vivienda, pero dentro de la edificación o pilón de uso público.

1/ Comprende los 43 distritos que conforman la provincia de Lima.

2/ Comprende las provincias: Barranca, Cajatambo, Canta, Cañete, Huaral, Huarochirí, Huaura, Oyon y Yauyos.

Fuente: INEI, 2018
Por otro lado, es importante indicar que de toda la población que tiene acceso a una red pública de agua, no toda tiene acceso a ella durante las 24 h del día (Figura 2) (8).

Figura 2.- Población (%) que consume agua proveniente de red pública entre febrero 2017 y enero 2018.

Nota: Red pública, incluye agua dentro de la vivienda, fuera de la vivienda, pero dentro de la edificación o pilón de uso público.
Fuente: INEI, 2018

Entre la zona urbana y rural, la última muestra un menor porcentaje de acceso a una red pública de agua y un menor tiempo de acceso a la misma (Figura 3) (8).

Figura 3.- Población rural (%) que consume agua proveniente de red pública entre febrero 2017 y enero 2018.

Nota: Red pública, incluye agua dentro de la vivienda, fuera de la vivienda, pero dentro de la edificación o pilón de uso público.
Fuente: INEI, 2018
En el mismo informe de 2017 se registró el porcentaje de personas con acceso a agua potable por medio de una red pública en la zona urbana (84.1%) y rural (9.2%) (Figura 4)\(^{(8)}\).

Figura 4.- Población rural (%) que consume agua según condición de potabilidad proveniente de la red pública, 2013 – 2017.

![Figure 4](image)

Nota: Red pública, incluye agua dentro de la vivienda, fuera de la vivienda, pero dentro de la edificación o pilón de uso público.

Fuente: INEI, 2018

Este déficit hídrico fuerza a las personas a recurrir a fuentes de agua no aptas para el consumo humano (pozos, acequias, ríos, etc.), como ocurre, por ejemplo, en la Amazonía rural, donde este número se incrementa anualmente. Un caso específico es el de la provincia de Amazonas, donde solo el 26.5% de habitantes cuenta con agua potable durante dos horas a la semana, viéndose forzados a usar fuentes inadecuadas de abastecimiento que generan constantes brotes de cólera, fiebre tifoidea y otras enfermedades infecciosas\(^{(9)}\).

En el Perú, el servicio de potabilización se da mediante plantas de tratamiento de agua potable, ya sean privadas o del Estado. A la fecha existen 51 Empresas Prestadoras de Servicios (EPS) de agua potable (Figura 5)\(^{(5)}\), estas EPS atienden al 62% de la población nacional, donde el 41% de las conexiones domiciliarias pertenecen a Sedapal en el ámbito de Lima y Callao, y solo el 21% corresponden a zonas rurales. Esta situación muestra la urgente necesidad de desarrollar nuevos
métodos de tratamiento de agua que sean rápidos, efectivos y viables, para abastecer, sobre todo, a la población rural.

Figura 5.- Entidades Prestadoras de Servicios de Saneamiento

Fuente: Carbajal y Lucich, 2016
2.2 Calidad de agua en el Perú

El agua es un recurso indispensable para el ser humano, es por ello que contar con fuentes de agua potable de calidad y abastecimiento accesibles es de primera importancia en el crecimiento y desarrollo de un país.

Actualmente, el recurso hídrico en el Perú proviene de 3 vertientes hidrográficas (Figura 6) (10) (11):

1. Pacífico: abastece y drena a la costa y la sierra occidental a través de 62 cuencas hidrográficas.
2. Atlántico: abastece y drena a la sierra oriental y a la Amazonía a través de 84 cuencas hidrográficas.
3. Titicaca: abastece y drena solo los departamentos aledaños y cuenta con 13 cuencas hidrográficas.

Figura 6.- Distribución nacional del recurso hídrico.

Fuente: SINIA, 2014
Como se pudo observar en el capítulo anterior, la distribución demográfica está concentrada en la zona urbana, así como los esfuerzos de control y manejo del saneamiento. Si a ello se le suma la información antes mencionada se obtiene que la mala calidad de agua se debe a dos motivos principales:

1. Distribución demográfica: la concentración de las actividades productivas y los núcleos urbanos alrededor de las tres vertientes hidrográficas principales genera una situación de demanda extenuante sobre el recurso hídrico del país; es decir, la mayor concentración demográfica se da dónde está la menor disponibilidad y abastecimiento del agua.

2. Descarga anual de desagüe: según el último informe de estadísticas ambientales del INEI al 2016, se considera que, anualmente, 960.5 millones de metros cúbicos de desagüe (domésticos, industriales, pesqueros, mineros y petroleros) son descargados sobre el agua superficial, subterránea y marina. Asimismo, entre los más contaminantes se encuentran los relaves mineros, quienes arrojan sus desperdicios (cobre, plomo, zinc, plata, etc.) directamente en los ríos y quebradas.

Pero ¿qué se entiende por “agua de calidad”? La calificación de agua potable aplica a aquélla que ha sido tratada según las normas y los estándares de calidad establecidos por las autoridades nacionales e internacionales pertinentes y que puede ser ingerida por personas o animales sin presentar ningún riesgo para su salud(12). Para ser apta para el consumo humano el agua debe cumplir con estos estándares inmediatamente después del proceso de tratamiento y presentar una calidad estable a lo largo de la red de distribución, es decir, que debe mantenerse inocua al pasar por el sistema de tuberías hasta llegar a nuestros domicilios. Para ello, es necesario fijar indicadores fisicoquímicos y microbiológicos para saber si ha existido contaminación natural o antropogénica.

En el Perú, los ECA establecidos por el MINAM fijan los valores máximos permitidos de contaminantes en el ambiente (agua, suelos, aire, etc.). Específicamente, para caracterizar al agua como potable, el ECA de 2017(13) tiene en consideración diversos indicadores de calidad ambiental (Anexo 4), como los siguientes:
Sólidos Totales Disueltos (STD)

Son el conjunto de todos los minerales, sales inorgánicas (calcio, magnesio, potasio, sodio, bicarbonatos, cloruros y sulfatos), cationes o aniones, metales y/o materia orgánica que están disueltos en el agua. Son una medida de todo el contenido que se puede encontrar en el agua, ya sea de forma ionizada, molecular o coloidal. Actualmente, la cantidad de STD en el agua es un Indicador de Calidad Ambiental (ICA) para el agua potable. Según el país, la cantidad máxima permitida para consumo humano puede variar. Por ejemplo, según la Agencia de Protección Ambiental de Estados Unidos es de 500 mg/L (14) y tanto la OMS como el ECA de Perú establecen un máximo de 1000 mg/L (3,13). Niveles altos de STD y conductividad tienen un efecto directo sobre la calidad del agua. Dependiendo del nivel de STD, el agua puede ser clasificada como muy blanda (0-70 ppm y 0-140 μS/cm), blanda (70 – 150 ppm y 140 – 300 μS/cm), ligeramente dura (150 – 200 ppm y 300 – 500 μS/cm), moderadamente dura (250 – 320 ppm y 500 – 640 μS/cm), dura (320 – 420 ppm y 640 – 840 μS/cm) y muy dura (> 420 ppm y 840 μS/cm) (15).

Temperatura

Es un parámetro esencial en la determinación de la calidad de agua potable porque influye directamente en el desarrollo de la actividad biológica. Específicamente, para el caso del agua potable, una temperatura muy elevada puede desencadenar la proliferación de bacterias, hongos, plantas acuáticas, entre otros organismos que pueden afectar la salud poblacional si son ingeridos. Este factor también está ligado a otros indicadores, como el pH, oxígeno disuelto, conductividad, entre otros, ya que su variación afecta a estos (16).

pH

El pH es un parámetro que está ligado al comportamiento de otros ICA; su fluctuación afecta el comportamiento de distintos procesos, como la coagulación, desinfección, etc. Es por ello que tanto la ANA como la OMS consideran que el pH del agua potable debe estar entre 6.5 y 8.5 (Δ 3 máximo) (13) (Figura 7) (17). Un pH menor a 6.5 podría ser un indicador de aguas ácidas y se presumiría la presencia de metales. Por otro lado, un pH mayor a 8.5 genera un agua alcalina, que, si bien no es un riesgo directo para la salud, puede provocar la acumulación de sedimentos en las tuberías.
Figura 7.- Niveles de pH

Fuente: Sigler y Bauder, 2017

Oxígeno Disuelto (OD)
Medir el oxígeno disuelto es esencial pues permite saber la cantidad de oxígeno gaseoso disuelto en una solución acuosa. El oxígeno se introduce en el agua mediante difusión desde el aire, por aeración (movimiento rápido), y como un producto de desecho de la fotosíntesis\(^{(18)}\). Debido al rol que juega en la existencia de la mayoría de los organismos acuáticos, se considera un indicador de calidad de agua.

Potencial de Oxido-Reducción (ORP)
Es una forma de medir la energía química de oxidación-reducción mediante un electrodo, convirtiéndola en energía eléctrica. El ORP puede ser positivo (cuando se produce una oxidación) o negativo (cuando se produce una reducción) y viene acompañado de cambios de pH en el medio en el cual se produce la reacción. Un método de control adecuado de desinfección de agua no solo se encarga de monitorizar, el pH, la temperatura o la cantidad de cloro libre, sino también mide el potencial redox del medio.

Conductividad
Es la capacidad de una solución para transportar la corriente eléctrica. Más precisamente, es la medida de la actividad de los iones disueltos en movimiento, así como también de su concentración y valencia en la solución acuosa; está ligada estrechamente a la temperatura. Este parámetro nos
ayuda a determinar de forma indirecta la cantidad de STD en el agua, y es una medida de control sobre los procesos de tratamiento, puesto que el incremento o decremento puede alterarlo.

Metales

Los metales y metaloides se encuentran de forma natural en el ambiente, por efecto de la erosión de rocas y dilución de minerales. Sin embargo, por las actividades humanas pueden llegar a convertirse en agentes contaminantes del aire, agua superficial y subterránea, otros ambientes acuáticos y el suelo (Figura 8)\(^\text{(19)}\). Específicamente, la contaminación del agua por metales pesados ocasionada por vía antrópica y natural, afecta drásticamente la seguridad alimentaria y salud pública\(^\text{(19)}\). La exposición prolongada a estos contaminantes, ya sea de forma directa o por bioacumulación, resulta en efectos graves para la salud, que van desde daños a los órganos hasta desarrollos cancerígenos; esto último dependiendo del metal o metaloide al cual uno se vea expuesto\(^\text{(19)}\).

Figura 8.- Fuentes de contaminación por metales pesados en aire, suelo, agua y planta.

Fuente: Reyes et al., 2016
Componentes Microbiológicos

Según los últimos informes de la OMS\(^{(3)}\), las enfermedades infecciosas causadas por bacterias que están en el agua contaminada siguen siendo una de las principales causas de la proliferación de epidemias en todo el mundo. Es por ello por lo que, si se quiere mantener un adecuado control de la calidad del agua potable, el componente microbiológico es el principal parámetro de análisis. Los límites permitidos de estos contaminantes están fijados internacionalmente por la OMS, pero cada país tiene su propia normativa, y en el Perú están establecidos por el ECA de 2017\(^{(13)}\) (Anexo 4).

2.3 Métodos convencionales de tratamiento del agua

Obtener agua potable requiere de una serie de procesos físicos, químicos y biológicos para eliminar todos los contaminantes, los más utilizados son los físicos y químicos. Los procesos químicos incluyen la coagulación, oxidación y desinfección, mientras que los procesos físicos incluyen la sedimentación, filtración, floculación, adsorción y desinfección con luz ultravioleta. Dependiendo de la concentración y tipo de contaminantes, se escoge los procesos necesarios en el orden que sean más eficaces. Cabe resaltar que todos estos métodos son utilizados de forma industrial, es decir por plantas potabilizadoras de agua.

El primer paso para obtener agua potable es determinar la calidad inicial en la fuente de abastecimiento (río, pozo, agua subterránea, manantial, etc.), para identificar los contaminantes y diseñar el tratamiento más eficaz. Dentro de los posibles contaminantes están los metales, materia orgánica disuelta o particulada, microorganismos patógenos, sales, sustancias orgánicas de toxicidad elevada, etc. Una vez identificados los contaminantes se puede realizar el mejor tratamiento, ya sea en combinación de varios métodos o aplicando solo uno. A continuación, se describen los tratamientos más usados, diferenciados en dos tipos: químicos y físicos.

Tratamientos químicos

- Coagulación: en su mayoría, los materiales inorgánicos y orgánicos suspendidos en el agua, y los no disueltos, se sedimentan si se les da el tiempo suficiente. Sin embargo, los materiales que principalmente contribuyen a la turbidez y color están disueltos o son demasiado pequeños para sedimentarse. En este último caso es que se forman los
denominados coloides (material con menos de un nanómetro de tamaño en una solución acuosa). El proceso de coagulación consiste en añadir al agua un aditivo químico que favorece la sedimentación del contaminante en estado coloidal. Los agentes coagulantes más utilizados son la álumina y el cloruro férrico\(^{(20)}\).

- Oxidación: este método es usado para eliminar contaminantes inorgánicos, como el hierro (Fe\(^{2+}\)), manganeso (Mn\(^{2+}\)) y arsénico (As\(^{3+}\)), entre otros. Este proceso se realiza con el fin de mejorar el proceso de coagulación o para destruir aquellos compuestos que provocan sabores u olores en el agua.

- Desinfección: este proceso busca eliminar a todos los organismos patógenos que pueden ser transmitidos por el agua; los métodos más comunes incluyen el uso de cloro, cloraminas y/o ozono. El objetivo de una adecuada desinfección en un sistema de agua es inactivar todos los organismos que causan enfermedades. Este término no debe confundirse con el de la esterilización, el cual es la muerte completa de todos los organismos vivos. Para comprobar la efectividad del método de desinfección en un sistema de agua potable se mide la presencia o ausencia de bacterias coliformes.

Tratamientos Físicos

- Sedimentación: se utiliza para la clarificación del agua. Puede ocurrir a través de la sedimentación por gravedad simple o mediante procesos de contacto con sólidos, que operan en una configuración de flujo descendente o ascendente.

- Floculación: es el proceso de mezclar lentamente el agua coagulada para incrementar la probabilidad de colisión entre partículas. Este proceso forma el “floc”, un material de aspecto de copo de nieve formado por partículas coloidales, microorganismos y precipitado\(^{(20)}\).

- Filtración: es el proceso de separación de partículas suspendidas y coloidales al pasar el agua a través de un medio filtrante. A medida que las partículas de los contaminantes pasan
al filtro, los espacios entre los poros del filtro se obstruyen, lo que reduce las aberturas. Los métodos más comunes son la filtración por gravedad, presión y membrana.

- **Adsorción**: es la acumulación de una sustancia en la superficie de un sólido llamado adsorbente. Estos últimos pueden incluir medios estacionarios, como carbón activado, resinas de intercambio iónico u óxidos de metal. Existe la adsorción orgánica (contaminantes orgánicos) y la inorgánica (contaminantes inorgánicos).

- **Luz ultravioleta (UV)**: la desinfección mediante este método se diferencia en la forma como se ataca al contaminante (molecularmente). La luz UV inactiva los microorganismos al dañar sus ácidos nucleicos y evitar que se repliquen, lo que les impide infectar al huésped. No deja residuos y, por lo tanto, no requiere la adición de otro desinfectante, como cloro.

2.4 Biofiltración

La biofiltración es el proceso por el cual se remueven contaminantes orgánicos o inorgánicos del aire o agua mediante el uso de un organismo biológico (bacterias, musgo, algas, plantas, etc.), a los instrumentos que realizan esta acción se les conoce como biofiltros.

El concepto de biofiltros fue introducido por primera vez en 1893 en Inglaterra, como un filtro por goteo con una solución biológica para el tratamiento de agua residual. En la actualidad se puede considerar que un biofiltro es cualquier tipo de filtro (ya sea para aire o de agua) que contenga biomasa en su interior. En la última década el uso de biofiltros, así como las investigaciones sobre ellos ha aumentado considerablemente debido al amplio rango de contaminantes que pueden tratar y el bajo costo monetario y operacional, por lo que su uso se ha extendido para el tratamiento de agua de uso doméstico y de uso recreativo (21).

Funcionan con tres mecanismos básicos: a) biodegradación, b) adsorción de los micro contaminantes y c) filtración de sólidos suspendidos. Estos ocurren en la biopelícula que genera el material orgánico utilizado en el filtro. Sin embargo, el comportamiento específico de los distintos biofiltros que existen resulta hasta la fecha, difícil de explicar debido a la especificidad de la
bioma con la cual trabaja cada uno de ellos en particular y a la afinidad que tenga cada biomasa para tratar de forma más eficiente con cada contaminante\(^{(21)}\).

Actualmente no se cuenta con un modelo estándar de biofiltro debido a que según los tipos de contaminantes que se quieran tratar y su estado, se escoge el material orgánico más adecuado y asequible; y a partir de ello se desarrolla la estructura de soporte y filtrado. Por ejemplo, si el insumo básico son plantas lo más recomendable es desarrollar un biofiltro que simule un humedal natural los biofiltros de flujo horizontal, por otro lado, si se trabaja con bacterias se debe de tener una estructura soporte de crecimiento donde estarán adheridas y podrán realizar el trabajo de biofiltración.

Los materiales más comúnmente usados para la construcción de biofiltros son el compost, la turba o musgo, plantas de diversas especies, derivados de madera (astillas, corteza, etc.) y microorganismos (bacterias). La mezcla de estos insumos orgánicos con materiales biológicamente inertes (grava, arena, etc.) ayuda a mejorar su eficiencia. Entre los materiales mencionados, uno de los más efectivos para la filtración de agua es la turba o musgo, debido a su alta capacidad de retención de partículas y microorganismos.

Por su uso, los biofiltros se pueden clasificar en dos tipos:

- a) Para tratar aguas residuales: sistemas complejos que procesa aguas grises y negras mezclando procesos biológicos y mecánicos (Anexo 1).

- b) Para uso doméstico: dispositivos pequeños y prácticos, ampliamente comercializados para limpiar tanques de agua, piscinas, jacuzzis y para purificar agua de consumo humano (Anexo 1).

2.5 El musgo: ecología y distribución
Las briófitas (musgos y hepáticas) se pueden considerar un grupo exitoso de plantas, ya que han evolucionado en una amplia variedad de formas, incluyendo más de 24 000 especies, lo que les ha permitido colonizar diversos ambientes. Uno de los géneros más abundantes es *Sphagnum*, que
consta de aproximadamente 300 especies y tiene una importancia fundamental para los ecosistemas en los que crecen, como los humedales y en las formaciones de turberas (22).

La anatomía y la forma única de crecimiento de las plantas de Sphagnum les da propiedades especiales para mantener su importante rol ecológico en el funcionamiento del ecosistema, como agentes activos de retención de agua, colonizadores, fijadores de nitrógeno y estabilizadores del suelo (23). Entre estas características, la más importante es su adaptabilidad para retener grandes cantidades de agua, tanto en las plantas vivas como en las muertas. Esta característica es importante para las plantas individuales, que no tienen suficientes raíces para poder absorber la humedad del suelo o los tejidos conductores internos necesarios para el transporte de agua. En una escala mayor, la capacidad de retener agua es importante ya que Sphagnum, y la turba derivada de sus restos muertos, juega un papel importante en el control de la escorrentía de amplias extensiones de tierra (22). Asimismo, las hojas de Sphagnum son altamente especializadas; forman un tejido especial que contiene clorofila, clorocitos e hidrocitos libres de contenido de células muertas, que son responsables de su enorme potencial para almacenar agua. Las especies de Sphagnum también producen metabolitos secundarios bioactivos, que influyen en la colonización microbiana (24). Además, tienen una capacidad pronunciada para intercambiar iones de hidrógeno por cationes minerales, una característica de particular ventaja en hábitats donde escasean los minerales necesarios para la nutrición. Debido a su capacidad de intercambio iónico, ha demostrado ser útil en la purificación de materiales de desecho. Comercialmente, las excelentes cualidades absorbentes del musgo seco lo han hecho útil para apósitos quirúrgicos, mientras que el musgo húmedo es valioso para el embalaje y envío de productos hortícolas y agrícolas. Por otro lado, se conoce que la turba Sphagnum se puede utilizar para absorber derrames de petróleo (23).

La distribución de este género es circumboreal en Europa, Asia y América del Norte y se extiende tanto al sur como al Himalaya, a través de América Central y del Sur a Tierra del Fuego y la República de Madagascar (22). En el Perú, el género Sphagnum se encuentra distribuido en los bosques húmedos y en los suelos pantanosos pertenecientes a las siguientes zonas de vida: Bosque húmedo – Montano Tropical (bh – MT) y Bosque muy húmedo – Montano Tropical (bmh – MT), que se encuentran entre 2500 y 3800 m.s.n.m., y en los Andes Orientales del centro y el sur del departamento de Junín y Cusco, entre 2500 y 3900 m.s.n.m. (24).
Actualmente, se han reportado en el Perú cuatro especies, siendo la de mayor abundancia *Sphagnum magellanicum*, endémica de Argentina, Chile y Perú; su hábitat natural son las turberas y humedales, donde forma montículos de color blanco rojizo. En el Perú, se le conoce como musgo blanco, y en el sur de Chile como musgo de turbera\(^{(26)}\). Según Schofield \(^{(27)}\), su clasificación taxonómica es la siguiente:

- División: Bryophyta
- Clase: Sphagnopsida
- Orden: Sphagnales
- Familia: Sphagnaceae
- Género: *Sphagnum*
- Especie: *Sphagnum magellanicum*

2.6 Aplicaciones del musgo

A lo largo de los siglos, las briofitas han sido utilizadas para la jardinería y horticultura; sin embargo, con el avance de la tecnología en los últimos 50 años, se ha diversificado su uso en diversas industrias. A continuación, se describen los usos principales en cada una:

Jardinería y Horticultura

Las briofitas han sido utilizadas desde épocas ancestrales como sustrato para trabajos en jardinería y horticultura debido a sus excelentes capacidades para fijar nitrógeno, estabilizar el suelo, retener humedad y absorber la humedad del ambiente\(^{(28)}\).

Farmacéutica

Actualmente, se utiliza la turba (musgo) en la elaboración industrial de inoculantes comerciales para la industria agrícola, debido a que posee bacterias fijadoras de nitrógeno óptimas para el desarrollo de este producto\(^{(29)}\). Específicamente, del género *Sphagnum* se extrae el sphagnol, compuesto fenólico que es usado en la elaboración de productos farmacéuticos y cosméticos para tratar enfermedades de la piel\(^{(22)}\).

Bioindicadores ambientales
En Europa es una práctica común el uso de briofitas como bioindicadores de polución ambiental, y se tiene registro desde 1981 sobre uso en ciudades industrializadas. Su excelente capacidad para absorber metales pesados y gases tóxicos sin dañarse a sí mismas las convirtieron en candidatos ideales para este tipo de trabajo. Las especies de musgo pueden ser utilizadas para detectar contaminantes distintos; por ejemplo, *Pottia truncata* es tolerante a altas concentraciones de zinc, cobre y cadmio, *Orthotrichum obtusifolium* es sensible al floruro de hidrógeno y tanto el género *Sphagnum* como el *Polytrichum* juegan un importante rol como depositadores de hierro.\(^{(28)}\)

Tratamiento de deshechos

La habilidad del musgo para poder adsorber iones metálicos, materia orgánica y aceites entre otros contaminantes ha fomentado que sea un buen insumo para biofiltros de aire y agua (industrial o doméstico)\(^{(28)}\). Particularmente se han desarrollado diversos estudios en el género *Sphagnum* sobre su capacidad para inhibir la formación de biopelícula en sistemas acuosos, habilidad que se ha buscado aprovechar en el desarrollo de nuevas tecnologías. Un ejemplo eficaz de ello es la empresa Creative Water Solutions (CWS), quien acredita como los diversos problemas que acarreaba la limpieza de aguas artificiales por el excesivo uso de productos químicos han disminuido al incorporar el musgo en los sistemas de limpieza. Asimismo, un estudio realizado por ellos mismos en el parque acuático Chaos Waterpark, del Metropolis Resort en Estados Unidos\(^{(31)}\), logró identificar las siguientes mejoras por la incorporación del musgo en sus sistemas de limpieza:

- Reducción en el tiempo de formación de la biopelícula, de 2-3 días a 2-3 meses.
- Reducción en los tiempos de mantenimiento en un tercio o menos.
- Importante reducción de la corrosión y una reducción correspondiente en las horas/hombre de mantenimiento preventivo.
- Importante reducción de irritaciones oculares, dérmicas y respiratorias (anteriormente ocasionadas por el uso de cloro).

Otras Industrias

- Construcción: desarrollo de productos como el “peatcrete” o “concreto de musgo” y el “peatwood” o “madera de musgo”\(^{(30)}\).
• Ganadería: material para las camas de los animales de establo (29).
• Embalaje: utilizado para el transporte de vegetales frescos, frutas y flores (29).

3. HIPÓTESIS

Un biofiltro hecho a base de musgo Sphagnum magellanicum reducirá la concentración de metales y bacterias, y por ende, mejorará la calidad de agua en los reservorios de las comunidades de los Centros Poblados de Satipo, Junín.

4. OBJETIVOS

4.1 Objetivo Principal

Evaluar la capacidad de un biofiltro a base del musgo S. magellanicum para reducir la carga bacteriana y de metales en el agua de uso doméstico en zonas rurales de Satipo, Junín.

4.2 Objetivos Específicos

• Diseñar un prototipo de biofiltro de agua para uso doméstico en zonas rurales de Satipo, Junín.
• Evaluar la capacidad de retención de metales y bacterias por el biofiltro en reservorios de agua de comunidades rurales de Satipo, Junín.

5. MATERIALES Y MÉTODOS

5.1 Área de estudio

La elección de la zona de estudio se realizó usando los siguientes criterios:

a) Reservorios: existencia de por lo menos un reservorio donde los valores de metales y/o bacterias excedieran los Estándares de Calidad Ambiental para agua de consumo humano (13).
b) Aceptación de la comunidad: los pobladores de la zona de muestreo debían estar de acuerdo con la instalación de los filtros en sus reservorios y apoyar al equipo técnico en el desarrollo de la investigación.
c) Accesibilidad: las comunidades debían de contar con reservorios ubicados en zonas de fácil acceso para el equipo técnico.

De acuerdo con lo anteriormente descrito se procedió a evaluar distintas localidades de las provincias de Jauja, Concepción, Huancayo y Satipo del departamento de Junín. De ellas, solo Satipo contó con comunidades que cumplieran los criterios previamente descritos, por lo cual se eligieron cuatro reservorios de tres Centro Poblados (CP): San José de la Florida (un reservorio), Santa Rosa de Cashingari (un reservorio) y Tzancuvatzari (dos reservorios: A y C) (Figura 9). En la Tabla 1 se detalla la disposición de los filtros, volumen de los reservorios y la población de cada CP.

Figura 9.- Mapa de la ubicación de los Centros Poblados muestreados.

![Mapa de la ubicación de los Centros Poblados muestreados.](image)

Tabla 1.- Número de filtros y volumen de los reservorios de los centros poblados muestreados.

<table>
<thead>
<tr>
<th>Centro Poblado</th>
<th>Volumen (m³)</th>
<th>Población*</th>
</tr>
</thead>
<tbody>
<tr>
<td>San José de la Florida</td>
<td>15.75</td>
<td>89</td>
</tr>
<tr>
<td>Santa Rosa de Cashingari</td>
<td>10.31</td>
<td>270</td>
</tr>
<tr>
<td>Tzancuvatzie A</td>
<td>46.79</td>
<td>430</td>
</tr>
</tbody>
</table>
5.2 Diseño del Estudio

De los cuatro reservorios, dos tuvieron un volumen menor a 20m3 (Figura A2-1) y dos un volumen mayor a 35m3 (Figura A2-2), por lo que se elaboró dos tipos de biofiltros:

- De un solo cartucho: se elaboraron 7 biofiltros de este tipo para el reservorio del CP San José de la Florida y 7 para el CP Santa Rosa de Cashingari.
- De cinco cartuchos: se elaboraron 13 biofiltros de este tipo para cada reservorio (A y C) del CP Tzancuvatziari.

Para evaluar la capacidad de filtración del musgo se analizó la calidad del agua antes (tiempo cero) y después de la instalación de los biofiltros. Esto se realizó de forma aleatoria en cada reservorio cada dos semanas durante 8 semanas. Se tomaron muestras de agua para el análisis de coliformes totales, coliformes fecales o termotolerantes, *Escherichia coli*, metales totales y parámetros fisicoquímicos del agua (pH, conductividad, temperatura, oxígeno disuelto y sólidos totales disueltos). En la semana 8 (posterior a la toma de muestras) se retiraron los biofiltros de todos los reservorios y se dejaron sin tratamiento durante dos semanas. A continuación, se inició un nuevo experimento bajo las mismas condiciones y tiempos que el anterior, con la finalidad de confirmar los resultados de eficiencia del biofiltro del primer experimento.

Se realizó una comparación entre pares de datos de metales y microbiológicos: 1) entre el inicio y cada 15 días y 2) entre el inicio y la semana nueve (antes del recambio), y 3) entre el inicio de la semana 10 y el final del experimento. El objetivo de la comparación 1) fue evaluar el tiempo de vida del filtro, y el de la comparación 2) y 3) fue evaluar el efecto total del tratamiento del agua con el biofiltro.

5.3 Diseño y elaboración del biofiltro

El musgo *Sphagnum magellanicum* (Figura 10) se extrajo de un bosque húmedo en la localidad de Curimarca (11°44′12″S - 75°27′01″O), provincia de Jauja, departamento de Junín, desde donde se transportó a la fábrica de Inka Moss S.A.C. (Sausa, Jauja) para el secado, prensado y empaquetado (Figura 11).
Para la elaboración de los cartuchos de musgo se utilizó 800 gr (peso seco) de una combinación de dos tipos de fibra de musgo blanco: tipo A (gametofitos de 5-10 cm) y tipo B (polvillo de musgo), en proporciones de 70%:30%, respectivamente. Se compactaron, mediante una prensa hidráulica a 300 psi en cartuchos de 32 cm x 32 cm x 11 cm.

Figura 10.- Sphagnum magellanicum Britt (musgo blanco) a) Conglomerado de musgos en vida silvestre, b) Musgo blanco de la especia de *Sphagnum magellanicum* c) Longitud promedio del musgo (8-10cm).
Figura 11. Proceso de manufactura del musgo blanco de la empresa Inka Moss S.A.C. a) Colecta del musgo del campo y limpieza b) Camas de secado c) Musgo en proceso de secado d) Musgo seco listo para prensar e) Prensa hidráulica f) Musgo prensado y empaquetado.

Luego de obtener los cartuchos, se colocaron en estuches filtrantes (Figura 12) y se instalaron en los reservorios (figura 13), según el procedimiento descrito en el “Manual para el biofiltro de musgo *Sphagnum magellanicum* – diseño, construcción, instalación, operación y mantenimiento” (Anexo 5).

Figura 12. Biofiltro de musgo *Sphagnum magellanicum* de cinco (05) cartuchos.
Figura 13.- Biofiltros instalados en los reservorios de a) Tzancuvatziari (cinco cartuchos) y b) de San José de la Florida y Santa Rosa de Cashingari (un cartucho).

5.4 Análisis de la calidad del agua: eficiencia del biofiltro

Se evaluó la capacidad de retención de bacterias y metales del biofiltro mediante los siguientes análisis:

(a) Físicoquímicos: se midió el potencial de hidrógeno (pH), temperatura (°C), potencial de óxido-reducción (ORP, en mV), conductividad (μS/m) y oxígeno disuelto (OD, en mg/L) con un equipo multiparametro Hach HQ40d (USA) provisto de sondas calibradas. Los sólidos totales disueltos (STD, en ppm) se midieron con un equipo portátil Hanna HI 991301 (USA). Todas las mediciones se realizaron en un punto aleatorio del reservorio y por triplicado.

(b) Microbiológico: se tomó una muestra de agua superficial en un punto aleatorio de cada reservorio para evaluar el número de coliformes totales, coliformes fecales o termotolerantes y E. coli. Las muestras fueron almacenadas en botellas plásticas estériles de 250 mL y transportadas a 4°C (Figura 14) a Lima, donde se analizaron en los
laboratorios de SGS del Perú S.A.C., acreditados por el Instituto Nacional de la Calidad del Perú. Los análisis de bacterias se realizaron según las siguientes técnicas:

- Coliformes totales: técnica de fermentación de múltiples tubos para miembros del grupo coliformes y técnica de fermentación de coliformes totales estándar (33).
- Coliformes fecales o termotolerantes: técnica de fermentación de múltiples tubos para miembros del grupo coliformes, test de termotolerantes y procedimiento estándar para coliformes fecales (33).
- Coliformes totales: técnica de fermentación de múltiples tubos para miembros del grupo coliformes y procedimiento de *Escherichia coli* utilizando sustrato fluorogénico (33).

Figura 14.- Muestra de agua para análisis microbiológicos de Tzancuvatziari A.
(c) Metales totales: se tomó tres muestras de agua superficial en puntos aleatorios de cada reservorio para evaluar la concentración de metales totales. Las muestras fueron almacenadas en botellas plásticas de 250 mL, preservadas en HNO$_3$ 10N y transportadas a 4°C para su análisis por espectroscopía de masas acoplada a plasma inducido (ICP-MS) (Figura 15) en los laboratorios de SGS del Perú S.A.C., acreditados por el Instituto Nacional de la Calidad del Perú.

Figura 15. Muestras de agua para análisis de metales totales a) Rotulado de los frascos b) Adición de HNO3 a las muestras c) Registro de datos d) Muestras de Tzancuvatziari A.
5.5 Análisis de Datos

Se calculó el porcentaje de disminución de contaminantes tomando como puntos de inicio (en donde se tomaría la cantidad de contaminantes presentes como el 100%) la semana 0a y la semana 8a, consecutivamente desde la semana 0b se calculó el porcentaje de disminución de las siguientes cuatro semanas, hasta la semana 8b.

Se realizó un Análisis de Componentes Principales (ACP) mediante una matriz de correlación, para determinar la influencia de la variación simultánea de los parámetros fisicoquímicos, bacteriológicos y de metales encontrados en aguas de los reservorios de las estaciones de muestreo. Antes de cada análisis, se evaluó la distribución normal de las variables mediante una prueba de Shapiro-Wilk (p < 0.05), aquellas que no cumplieron con este requisito se transformaron a logaritmo. El ACP es una técnica que permite la reducción de la dimensionalidad de un conjunto amplio de variables en componentes (o ejes) que muestren la mayor correlación posible entre ellas. Este análisis genera tantos componentes como variables existan, pero por lo general son los dos o tres primeros los que representan el mayor porcentaje de la varianza. Esta última es una medida de la dispersión de las variables con respecto a sus medias, y puede utilizarse para explicar las diferencias entre las estaciones de muestreo. El ACP le atribuye a cada variable un ‘peso’ relativo (‘eigenvalue’) sobre cada componente o eje. Gráficamente, el ACP lo representa como flechas que apuntan en la dirección de mayor influencia sobre las estaciones de monitoreo. Cuanto mayor el valor del eigenvalue más larga la flecha y mayor la influencia. Esta técnica se emplea en el análisis exploratorio de datos y para construir modelos predictivos \(^{(34)}\). El ACP se realizó mediante el programa PAST 2.11.

Para este análisis solo se consideraron las estaciones donde se tomaron todas las variables ambientales por igual. En el CP Santa Rosa de Cashingari se interrumpió el experimento en la semana 7a debido a problemas internos de la comunidad, por lo que solo se colectaron datos hasta la semana 6a. En el análisis de eficiencia del biofiltro, solo se consideraron los datos de metales.
6. RESULTADOS

En este estudio se tomaron muestras de agua de reservorios del área rural de Satipo (Junín), para el análisis de parámetros fisicoquímicos, microbiológicos y concentración de metales totales. Esto se realizó cada 15 días y por 18 semanas durante el tratamiento con biofiltros a base del musgo blanco *Sphagnum magellanicum*.

6.1 Parámetros fisicoquímicos

Los valores de pH, OD y temperatura de los tres reservorios fueron muy similares y estuvieron dentro de los rangos establecidos por el ECA (Tabla A3-1). Sin embargo, los STD y la conductividad en TZA A y TZA C mostraron niveles menores que en FLO (Tabla 2).

Tabla 2.- Media (± D.E.) de los análisis fisicoquímicos durante las dieciocho semanas de muestreo en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Reservorio</th>
<th>pH</th>
<th>ORP (mV)</th>
<th>Cond (µS/m)</th>
<th>T° (°C)</th>
<th>OD (Mg/L)</th>
<th>STD (Ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZA A</td>
<td>8.24 (0.09)</td>
<td>-73.68 (7.28)</td>
<td>110.59 (2.37)</td>
<td>23.32 (2.08)</td>
<td>7.75 (0.34)</td>
<td>72.6 (14.69)</td>
</tr>
<tr>
<td>TZA C</td>
<td>8.10 (0.22)</td>
<td>-62.18 (6.37)</td>
<td>120.54 (4.74)</td>
<td>24.44 (2.25)</td>
<td>7.63 (0.43)</td>
<td>78.3 (20.24)</td>
</tr>
<tr>
<td>FLO</td>
<td>8.04 (0.10)</td>
<td>-62.311 (7.30)</td>
<td>447.8 (28.59)</td>
<td>26.32 (1.84)</td>
<td>6.41 (1.31)</td>
<td>273.1 (79.78)</td>
</tr>
</tbody>
</table>

6.2 Parámetros microbiológicos

Hubo una reducción de coliformes totales en TZA A (36%) y TZA C (57.2%) entre la semana 0a y 8a (Figura 16). Entre la semana 0b y 6b se redujeron en 82,2%, 86.2% y 44,4% para los reservorios de TZA A, TZA C y FLO, respectivamente (Figura 17). Por otro lado, los coliformes fecales solo estuvieron presentes en TZA A y TZA C y mostraron una reducción > 45% (Tabla 3) entre las semanas 0a y la 8a (Figura 18) y 0b y 6b (Figura 19). El biofiltro no tuvo ningún efecto en la reducción de niveles de *E.coli* (Tabla A3-2).
Figura 16.- Concentración de coliformes totales en el experimento a en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (50 NMP/100 mL).

Figura 17.- Concentración de coliformes totales en el experimento b en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (50 NMP/100 mL).
Tabla 3.- Cálculo del porcentaje de disminución de bacterias entre semanas en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzancuvatziari y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Localidad</th>
<th>Semana</th>
<th>Dato</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TZA A</td>
<td>0a</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>79</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>14</td>
<td>82.27</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0a</td>
<td>185</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>79</td>
<td>57.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>240</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>33</td>
<td>86.25</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0b</td>
<td>8.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>4.5</td>
<td>44.44</td>
</tr>
<tr>
<td></td>
<td>TZA A</td>
<td>0b</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>4.5</td>
<td>65.38</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0a</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>33</td>
<td>48.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>11</td>
<td>66.66</td>
</tr>
</tbody>
</table>

Figura 18.- Concentración de coliformes fecales en el experimento a en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (20 NMP/100 mL).
Figura 19.- Concentración de coliformes fecales durante el experimento b en los reservorios A (TZA A) y C (TZA C) del CP Tzancuvatziari y San José de la Florida (FLO). La línea verde indica el ECA (20 NMP/100 mL).

6.3 Análisis de Metales
En el tiempo cero, los únicos metales que superaron el ECA fueron el hierro (Fe) en TZA A y TZA C, y el aluminio (Al) en Santa Rosa de Cashingari (CASH) (Tabla A3-3). Entre la semana 0a y 8a hubo una reducción de Fe en TZA A (22%) y TZA C (18%), y entre la semana 0b y 6b fue del 21% (TZA A) y 36% (TZA C) (Tabla 4). En CASH, el Al se redujo en 96.4% entre la semana 0a y 6a (Figura 20 y Tabla 4). El vanadio (V) y manganeso (Mn) también mostraron una reducción entre las semanas de la 0b y 6b (Tabla 4).
Tabla 4.- Cálculo del porcentaje de disminución de metales entre semanas en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzancuvatziari y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Localidad</th>
<th>Semana</th>
<th>Dato</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganeso</td>
<td>TZA A</td>
<td>0a</td>
<td>0.0220</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.0198</td>
<td>10.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.0209</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.0280</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0a</td>
<td>0.014</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.0113</td>
<td>20.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.0575</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.0195</td>
<td>65.99</td>
</tr>
<tr>
<td>Vanadio</td>
<td>TZA A</td>
<td>0a</td>
<td>0.005</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.0031</td>
<td>39.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.0042</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.0044</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0a</td>
<td>0.003</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.0007</td>
<td>80.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.0242</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.0044</td>
<td>81.94</td>
</tr>
<tr>
<td>Hierro</td>
<td>TZA A</td>
<td>0a</td>
<td>1.148</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.8890</td>
<td>22.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>1.4266</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>1.1190</td>
<td>21.01</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0a</td>
<td>0.554</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.4506</td>
<td>18.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.5946</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.4705</td>
<td>20.87</td>
</tr>
<tr>
<td>Aluminio</td>
<td>CASH</td>
<td>0a</td>
<td>1.145</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8a</td>
<td>0.0590</td>
<td>94.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b</td>
<td>0.4500</td>
<td>60.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6b</td>
<td>0.0410</td>
<td>96.42</td>
</tr>
</tbody>
</table>
Figura 20.- Concentración de Al en el reservorio del CP Santa Rosa de Cashingari (CASH). La línea verde indica el ECA (0.9 mg/L).

![Gráfico de concentración de Al]

6.4 Rendimiento

Los resultados de disminución máxima de bacterias y metales durante cada experimento permitieron determinar un tiempo de vida del biofiltro de ocho semanas. Durante ese periodo la absorción de contaminantes es óptima para obtener los porcentajes de disminución más altos, posterior a las ocho semanas la eficiencia de absorción del biofiltro disminuye.

6.5 Análisis de Componentes Principales

El ACP de las variables fisicoquímicas, microbiológicas y de metales consideradas permitió determinar el nivel de influencia que tienen los contaminantes en las tres estaciones muestreadas (Figura 21).
Figura 21.- Análisis de Componentes Principales (ACP) de variables fisicoquímicas, microbiológicas y de metales en los reservorios A (TZA A) y C (TZA C) del Centro Poblado de Tzuncuatziai y San José de la Florida (FLO). Los números al lado de cada punto representan la semana de muestreo. El ACP le atribuye a cada variable un ‘peso’ relativo sobre cada componente, que se representa como flechas que apuntan en la dirección de mayor influencia sobre las estaciones de monitoreo. Cuanto más larga la flecha, mayor la influencia.
De la misma manera, permitió identificar la varianza explicada por el componente 1 (49.6\%) y 2 (14.9\%), y la contribución de cada parámetro ambiental a estos componentes (Tabla 5).

Tabla 5.- Contribuciones de las variables fisicoquímicas, microbiológicas y metales a los dos primeros componentes principales (PC) del ACP de las aguas de los reservorios A y C del Centro Poblado de Tzancuvatziari y San José de la Florida.

<table>
<thead>
<tr>
<th></th>
<th>PC 1</th>
<th>PC 2</th>
<th>% Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.14744</td>
<td>-0.42611</td>
<td>49.57</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>-0.1265</td>
<td>0.39554</td>
<td>14.91</td>
</tr>
<tr>
<td>Cond (µS/m)</td>
<td>-0.35132</td>
<td>-0.0076</td>
<td>10.15</td>
</tr>
<tr>
<td>T° (°C)</td>
<td>-0.21092</td>
<td>-0.00834</td>
<td>7.24</td>
</tr>
<tr>
<td>OD (mg/L)</td>
<td>0.25081</td>
<td>-0.03113</td>
<td>4.09</td>
</tr>
<tr>
<td>STD (ppm)</td>
<td>-0.32941</td>
<td>0.075921</td>
<td>3.10</td>
</tr>
<tr>
<td>Ba</td>
<td>-0.29373</td>
<td>0.26144</td>
<td>2.74</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2043</td>
<td>0.38607</td>
<td>2.23</td>
</tr>
<tr>
<td>Sr</td>
<td>-0.32537</td>
<td>0.12785</td>
<td>1.70</td>
</tr>
<tr>
<td>V</td>
<td>0.20447</td>
<td>0.40221</td>
<td>1.50</td>
</tr>
<tr>
<td>Zn</td>
<td>-0.16219</td>
<td>0.37887</td>
<td>1.06</td>
</tr>
<tr>
<td>Fe</td>
<td>0.33724</td>
<td>0.042066</td>
<td>0.81</td>
</tr>
<tr>
<td>CT</td>
<td>0.2987</td>
<td>0.21222</td>
<td>0.51</td>
</tr>
<tr>
<td>CF</td>
<td>0.29642</td>
<td>0.15241</td>
<td>0.25</td>
</tr>
<tr>
<td>E.coli</td>
<td>0.17354</td>
<td>0.21452</td>
<td>0.073</td>
</tr>
</tbody>
</table>
El primer componente separó claramente los sitios de muestreo de Tzancuvatziari (a la derecha) y San José de La Florida (a la izquierda). En el primer sitio, se observa que el OD, Fe y coliformes totales y fecales tuvieron la mayor influencia sobre las características del agua; en el segundo sitio, la tuvieron la conductividad, STD, Sr y Ba. El segundo componente consiguió separar los sitios de Tzancuvatziari de acuerdo con el tiempo, ubicando en la parte superior los muestreos entre las semanas 0b y 8b, y en la parte inferior, los de las semanas 0a a 8a. En este caso, el pH tuvo una fuerte influencia sobre las semanas 0a a 8a, y el ORP, Mn, V y Zn sobre las semanas 0b y 8b.

7. DISCUSIÓN

El biofiltro a base de *Sphagnum magellanicum* tiene la capacidad de mejorar la calidad de agua al retener coliformes totales en un 86%, coliformes fecales en un 66% y metales en un 96% (dependiendo del metal). No tiene efecto alguno sobre la disminución de *E.coli*. Sin embargo, hubo algunos factores no controlados, como el aumento del flujo de agua producido por las lluvias, y una inadecuada cobertura de los reservorios y red de distribución, que podrían haber influido en los resultados.

Parámetros fisicoquímicos

En esta investigación, se realizó una evaluación de la calidad del agua en reservorios de centros poblados rurales de Satipo. Esto permitió identificar diferentes contaminantes que superaron los ECA nacionales para agua de consumo humano. Asimismo, el ACP permitió evidenciar la asociación entre las diferentes variables ambientales y contaminantes de interés, como los metales y bacterias, lo cual es importante para explicar su influencia en la eficiencia de los biofiltros de musgo.
• *Oxígeno disuelto*

Como se observó en el ACP, tanto el OD como el componente microbiológico convergen en la misma dirección y se encuentran cercanos entre sí, lo que indica una correlación positiva. Como se sabe, las bacterias presentes en los CT y CF son, en su mayoría, aeróbicas, por lo que requieren de una concentración de oxígeno entre 5 – 8 mg/L para sobrevivir (por debajo de este rango entran en un estado de hipoxia y muerte), la cual concuerda con los niveles de OD en las estaciones de muestreo (7.75 – 8.85 mg/L). Los ECA de agua nacionales e internacionales indican que un agua potable de calidad debe tener una concentración de OD entre 7 – 8 mg/L; sin embargo, niveles altos de OD generan que sea un ambiente óptimo para la proliferación de bacterias patógenas aeróbicas, como *E.coli*. De forma similar, el ACP muestra cómo el OD se encuentra correlacionado negativamente con la temperatura (*r* ≈ -1), lo cual se corrobora por el descenso de la difusión de oxígeno conforme se incrementa la temperatura. Esto se observa en la Tabla 1, donde los reservorios TZA A y TZA C muestran mayores niveles de OD con temperaturas más bajas que el reservorio FLO, el cual tiene la menor concentración de OD y la mayor temperatura en el agua.

• *Conductividad y sólidos totales disueltos*

La conductividad es un indicativo de la cantidad de iones contenidos en una solución, que tiene una relación directa con los STD, los cuales son la suma total de toda sustancia orgánica (plantas, plancton, deshechos, etc.) e inorgánica (sales, minerales, metales, cationes sueltos, etc.) presentes en el agua ya sea en estado ionizado, molecular o coloidal (15). Esto se observa claramente en la Figura 21, donde la conductividad y STD aumentaron en simultáneo, y con una mayor influencia (valores mayores) en el sitio FLO que en TZA (Tabla 1). Este parámetro afecta la infraestructura de abastecimiento (tuberías, válvulas, etc.) más que ningún otro parámetro organoléptico, pues ocasiona la acumulación de compuestos y su posterior deterioro. Consecuentemente, elevados niveles de STD afectan el sabor (generando sabores salados, amargos, etc.) y el olor. Como se observa en la Tabla 1 los niveles de STD y conductividad en los reservorios TZA A y TZA C corresponden a la descripción de agua blanda. Por el contrario, el agua del reservorio FLO se puede clasificar como ligeramente
dura, lo que se comprueba en el ACP por la influencia positiva y abundancia de cationes de bario, estroncio y zinc.

Ligada a los STD se encuentra la turbidez, la cual mide el nivel de transparencia en el agua y es una medida de la concentración de partículas en suspensión, ya sean de origen orgánico (bacterias, parásitos, algas, plancton, etc.) o inorgánico (arcilla, fango, sedimentos procedentes de la erosión, metales, etc.) que pueden estar en estado sólido, líquido o gaseoso y en tamaños micro y/o macroscópicos. Mientras mayor cantidad de partículas en suspensión, el agua tendrá una mayor turbidez. Un elevado nivel de turbidez genera un sabor y olor desagradables; asimismo, ofrece una protección a los microorganismos de los efectos de los desinfectantes, disminuye los niveles de OD, aumenta la demanda de cloro y estimula la proliferación de bacterias.

- \(\text{pH} \)

Los niveles obtenidos sugieren que son aguas aptas para consumo poblacional, previa potabilización con desinfección. Estas condiciones ligeramente alcalinas podrían deberse a la presencia natural de carbonatos, bicarbonatos y sales de sodio, potasio, calcio y magnesio de origen litológico, que funcionan como amortiguadores de la acidez producida por los ácidos húmico y fúlvico de la descomposición de la materia orgánica vegetal y animal, característica de las quebradas de la selva.

El nivel de pH es importante para determinar la solubilidad y biodisponibilidad de los cationes metálicos prevalentes en un ambiente. A pH alto (> 8.5), como el encontrado en este estudio, los metales se presentan en formas complejas, como hidróxidos u óxidos, los cuales pueden ser insolubles y precipitar en los sedimentos. Esta insolubilidad puede también ser influenciada por la presencia de materia orgánica. Como describe Sales \(^{35} \), en la selva el suelo el rico en materia orgánica la cual puede incidir sobre la toxicidad de los metales encontrados en el agua.
Metales

Elementos metálicos que presentan un gran peso atómico, como por ejemplo el mercurio, cromo, cadmio, arsénico, plomo, cobre, zinc y níquel entre otros; pueden generar ciertos efectos sobre los seres vivos y tienden a bioacumularse en la cadena alimentaria a altas dosis\(^{(36)}\). Los compartimentos acuáticos y terrestres actúan como reservorios de metales de origen natural y antrópico, cuya biodisponibilidad es afectada por una diversidad de factores intrínsecos a estos ambientes, como el pH y potencial de óxido-reducción (redox), calidad y cantidad de secuestradores orgánicos, partículas en suspensión, presencia de otros cationes o aniones, fuerza iónica, temperatura o intensidad de luz, y flujo de agua. En el caso particular de los suelos, tenemos además su textura, composición granulométrica y mineral\(^{(37)}\).

El sedimento es una fuente importante de aporte natural de elementos metálicos para los ambientes acuáticos, en forma de micronutrientes o como contaminantes. En general, los sedimentos ácidos y oxidantes permiten a los metales, especialmente al cadmio y zinc, movilizarse con mayor facilidad y, por lo tanto, ser más biodisponibles. Por el contrario, en sedimentos neutros, alcalinos o reductores, los metales son considerablemente menos biodisponibles. Los elementos litogénicos (de origen rocoso) se encuentran asociados a minerales primarios o secundarios (sobre todo minerales arcillosos) que ocurren en el material de origen. Su movilidad depende, en primer lugar, de los procesos de intemperización (desintegración y descomposición de minerales y rocas por la acción atmosférica) y, luego, de la capacidad de intercambio aniónico y catiónico de los minerales. Los elementos traza pedogénicos (relacionados con la formación del suelo) son tanto litogénicos como antropogénicos, pero su distribución y especiación son el resultado de varios procesos, entre los cuales, la fijación por minerales arcillosos y la formación de complejos con la materia orgánica del suelo juegan un papel crucial\(^{(36)}\).

Las fuentes de agua de las tres estaciones de muestreo fueron de origen natural. En el caso de TZA A y TZA C la fuente de abastecimiento fue un riachuelo, cuyo origen es una cascada, y para FLO, fue agua subterránea. La presencia de metales traza en el agua se puede deber a diversos factores, como el contacto con gases, líquidos y sólidos que sucedan durante el flujo del ciclo hídrico, así como también la litología del suelo mismo. Con respecto a esto último,
se conoce que muchos metales disueltos en el agua provienen de la meteorización de rocas ígneas depositadas en componentes arcillosos\(^3\). Por ello, en las comunidades San José de la Florida y Tzancuvatziari la influencia de los metales, revelada por el componente 1 del PCA, puede deberse a fuentes cercanas de escorrentía natural de metales que descienden desde la zona andina hasta llegar a las vertientes de la zona selva.

En este estudio se comprobó la efectividad del biofiltro para la retención de metales pesados, como el hierro y aluminio, lo cual ha sido observado en otros estudios para musgos del género *Sphagnum*\(^3\). Existen diversos reportes que demuestran la capacidad de otras especies de musgo (incluyendo el género *Sphagnum*) para retener cadmio, cobre, cromo, mercurio, níquel entre otros\(^3\). Como se sabe, el mecanismo de adsorción de metales en el musgo no está completamente definido, pero dependiendo de la especie de musgo, puede ocurrir intercambio iónico entre ácidos orgánicos\(^4\), adsorción física, intercambio de pares de electrones, quelación, entre otras reacciones bioquímicas. Se sabe que las briofitas tienen una excelente capacidad para secuestrar nutrientes y metales del agua, debido a su capacidad para intercambiar cationes con la pared celular de sus hojas. Particularmente, en el género *Sphagnum*, el intercambio se da entre el ion hidrógeno y cationes del agua, como el calcio, sodio, magnesio, estroncio, manganeso, entre otros\(^4\).

Lo anteriormente descrito apoyaría nuestra hipótesis sobre el uso de filtros hechos a base de *S. magellanicum* para reducir los niveles de metales en las aguas de uso doméstico. Este punto es innovador en los biofiltros caseros, ya que en su mayoría estos requieren de un componente químico adicional para poder eliminar los componentes metálicos del agua ya sea por sedimentación u otro método. Asimismo, se podrían usar distintos tipos de combinaciones de especies de musgos para mejorar la capacidad de retención a distintos contaminantes.
Parámetros microbiológicos

Como se observa en el PCA, los reservorios de Tzancuvatziari (TZA A y TZA C) tuvieron una mayor influencia del componente microbiológico, lo que puede explicarse por el tipo de reservorio y red de distribución de agua que utilizan. Esta comunidad presenta, dentro de su circuito de abastecimiento, reservorios expuestos a la intemperie, donde diversos organismos, como insectos y arácnidos se posan y dejan sus huevecillos, asimismo son susceptibles de contaminarse por el polvo y excretas de cualquier animal.

La reducción de la carga de coliformes fecales y totales indica el efecto positivo que tendría el musgo para reducir la carga bacteriana. En el 2009 Montenegro et. al. (7) comprobó las propiedades antimicrobianas del extracto del musgo vivo contra bacterias gram negativas como la *E.coli* y *Vibrio cholerae* entre otras y en el 2012 Condori et. al. (42) evaluó también el efecto de extracto de musgo vivo contra bacterias gram positivas, como el *S. aureus* y el *S. faecalis*, esto explica la actividad del musgo para disminuir los coliformes fecales y totales. Sin embargo, falta un análisis detallado de la capacidad de retención del musgo seco ante este tipo de bacterias.

En nuestro estudio el aumento de la carga bacteriana en la semana 8b se debió, a factores externos no controlados, como:

- El volumen variable del agua: los reservorios no mantuvieron un flujo constante debido las lluvias ocasionales, lo que pudo incrementar la carga bacteriana causando que el biofiltro sobrepase su capacidad de retención. Evidencia de ello es el aumento súbito de microrganismos luego de que sus niveles venían descendiendo de manera constante entre semanas.

- Exposición del agua: algunos reservorios (TZA A y TZA C) no estuvieron completamente cerrados lo que pudo exponerlos a contaminación por vía aérea.

Esto ocasionó que los niveles de contaminantes sobrepasen la capacidad de los biofiltros, sobre todo en los reservorios alimentados por redes de abastecimiento que no se encuentran debidamente protegidas de los agentes externos (TZA A y TZA C).
8. CONCLUSIONES

- El biofiltro de *Sphagnum magellanicum* remueve hasta el 86% de coliformes totales, 66% de coliformes fecales o termotolerantes, 96% de aluminio, 22% de hierro, 66% de manganeso y 81% de vanadio en reservorios del área rural de Satipo.
- El biofiltro de musgo tiene un tiempo de vida de 8 semanas.

9. RECOMENDACIONES

- Realizar un análisis de la capacidad del biofiltro para disminuir otros contaminantes, como, por ejemplo, cadmio, cobre, cromo, mercurio, níquel, entre otros metales tóxicos.
- Probar otros modelos de biofiltros con distintos prensados de fibra de musgo e incorporar otros tipos de materiales naturales, que puedan complementar su función en el tratamiento de agua.
- Utilizar mayores concentraciones de musgo seco para reducir las concentraciones de *E. coli*.
- Tomar en cuenta para futuras réplicas, los factores externos que no pudieron ser controlados en este diseño, como: lluvias, flujo de agua, tipo de reservorio, convivencia con la comunidad, etc.
10. REFERENCIAS BIBLIOGRAFICAS

1. Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas (WWAP). Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo 2016: Agua y Empleo. París: Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO); 2016.

ANEXOS

ANEXO 1.- MODELOS DE BIOFILTROS PARA TRATAR AGUAS RESIDUALES Y DE USO DOMÉSTICO.

Biofiltro de Flujo Horizontal

Este tipo de biofiltro busca semejar a un humedal natural usando plantas de pantano en la superficie de su construcción y dejando un desnivel más profundo por donde se filtrará y limpiará el agua usando las raíces y bacterias de las plantas mismas, que fijan y degradan los nutrientes contenidos en el agua. Tiene un componente inorgánico, el cual es el lecho filtrante, el cual puede ser de grava, arena, piedra volcánica o cualquier elemento poroso. Previo al biofiltro, el agua pasa por un sedimentador para retener componentes de mayor tamaño.

Figura A1-1.- Sección longitudinal de un biofiltro de flujo horizontal.
Biodiscos o Contador Biológico Rotatorio (CBR)

Este tipo de filtro se usa para limpiar materia orgánica (soluble o coloidal) de aguas residuales y darles un segundo uso. Está conformado por un tanque de concreto que contiene una serie de discos (pueden ser de distintos materiales, como polietileno, derivados de madera, aleaciones de musgo y polietileno, etc.) colocados en un eje y sumergidos hasta en un 40% en el agua residual a tratar, donde la biopelícula generada en los discos absorbe los contaminantes conforme van circulando. Es utilizado en la remoción de contaminantes orgánicos.

Figura A1-2.- Esquema de un biofiltro de discos.

Lodos Activados

En este sistema se desarrolla un cultivo bacteriano en forma de flóculo, que se deposita en un contenedor oxigenado y se alimenta con el agua a tratar, de la cual se nutrirán las bacterias. Por ello, se prefieren aguas residuales ricas en fósforo, nitrógeno u otros oligoelementos. No es un filtro muy útil para aguas con metales pesados, sales u otros componentes que puedan inhibir o destruir la actividad bacteriana. Se le llaman ‘lodos activados’ porque el proceso final es una decantación de todo el lodo producido.
Figura A1-3.- Esquema de trabajo de un biofiltro de lodos activados.

Filtro de bioarena o ‘Bio Sand Filter’ (BSF)

Creado, comercializado y distribuido por la empresa Ohorizons, fue hecho para personas de bajos recursos con la necesidad de saneamiento de agua. El dispositivo consiste en una caja de madera o cemento rellenada con capas de arena y grava (para la sedimentación de contaminantes) y de una biopelícula de bacterias (las cuales se alimentarán de las bacterias del agua a tratar).
Biofiltro de bacterias

Los modelos de biofiltros que usan bacterias varían ampliamente en el mercado, debido al tipo de contaminante a tratar para el que se escogerá el mejor cultivo bacteriano. Por ejemplo, tenemos la empresa Velda, que ha desarrollado un biofiltro específicamente para la limpieza de estanques (Figura A1-5), y a la empresa Pentair (Figura A1-6), cuyas bacterias se especializan en descontaminar aguas con excesos de compuestos nitrogenados.

Biofiltro de musgo

Creado, comercializado y distribuido por la empresa Creative Water Solutions (CWS), utiliza musgo del género *Sphagnum* para limpiar piscinas, jacuzzis, estanques y/o parques temáticos acuáticos. Tiene un sistema de bombeo de agua y filtros de musgo prensado que logran desinfectar, limpiar y evitar la corrosión, remover contaminantes orgánicos, metálicos y mejorar la eficiencia de los productos químicos de limpieza en el agua, como el cloro.

Figura A1-7.- Biofiltro para sistemas acuáticos recreativos.
ANEXO 2.- MODELO DE RESERVORIO

Figura A2-1.- Modelo de los reservorios de las comunidades de San José de la Florida (FLO) y Santa Rosa de Cashingari (CASH).

Figura A2-2.- Modelo de los reservorios de las comunidades de Tzancuvatziari A (TZA A) y Tzancuvatziari C (TZA C).
ANEXO 3.- DATOS COMPLETOS DE PARÁMETROS FISICOQUÍMICOS, ANÁLISIS MICROBIOLÓGICO Y DE METALES

Tabla A3.1.- Análisis fisicoquímicos en agua en los reservorios A (TZA A) y C (TZA C) del CP de Tzancuvatziari y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Semana</th>
<th>Reservorio</th>
<th>pH</th>
<th>ORP (mV)</th>
<th>Cond (µS/m)</th>
<th>T° (°C)</th>
<th>OD (mg/L)</th>
<th>STD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>TZA A</td>
<td>8.03</td>
<td>-55.3</td>
<td>111.6</td>
<td>20.1</td>
<td>8.03</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.12</td>
<td>-60.5</td>
<td>126.4</td>
<td>20.8</td>
<td>8.03</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.05</td>
<td>-57.3</td>
<td>468</td>
<td>25.1</td>
<td>7.14</td>
<td>281</td>
</tr>
<tr>
<td>2a</td>
<td>TZA A</td>
<td>8.22</td>
<td>-70.1</td>
<td>111</td>
<td>21</td>
<td>8.1</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.1</td>
<td>-62.4</td>
<td>124.7</td>
<td>22</td>
<td>8.12</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.01</td>
<td>-57</td>
<td>447</td>
<td>23.6</td>
<td>7.6</td>
<td>270</td>
</tr>
<tr>
<td>4a</td>
<td>TZA A</td>
<td>8.35</td>
<td>-80.7</td>
<td>110</td>
<td>22</td>
<td>8.12</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.09</td>
<td>-66.5</td>
<td>121.4</td>
<td>23.3</td>
<td>8.1</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>7.94</td>
<td>-58.6</td>
<td>436</td>
<td>26.1</td>
<td>7.5</td>
<td>255</td>
</tr>
<tr>
<td>6a</td>
<td>TZA A</td>
<td>8.29</td>
<td>-77.7</td>
<td>107.5</td>
<td>26.9</td>
<td>7.89</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.6</td>
<td>-65.8</td>
<td>122</td>
<td>27</td>
<td>7.8</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.13</td>
<td>-69.8</td>
<td>443</td>
<td>28.6</td>
<td>6.15</td>
<td>286</td>
</tr>
<tr>
<td>8a</td>
<td>TZA A</td>
<td>8.25</td>
<td>-75.8</td>
<td>112.2</td>
<td>25.9</td>
<td>7.38</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.13</td>
<td>-69.5</td>
<td>119.9</td>
<td>28.1</td>
<td>7.25</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.09</td>
<td>-67</td>
<td>410</td>
<td>28.8</td>
<td>4.61</td>
<td>223</td>
</tr>
<tr>
<td>0b</td>
<td>TZA A</td>
<td>8.31</td>
<td>-78.50</td>
<td>108.3</td>
<td>24</td>
<td>7.1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>7.77</td>
<td>-48.3</td>
<td>108.6</td>
<td>26</td>
<td>6.9</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.18</td>
<td>-72.5</td>
<td>394</td>
<td>28.8</td>
<td>6.27</td>
<td>219</td>
</tr>
<tr>
<td>2b</td>
<td>TZA A</td>
<td>8.2</td>
<td>-72.6</td>
<td>113.4</td>
<td>24.3</td>
<td>8.01</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>7.85</td>
<td>-55.2</td>
<td>120.1</td>
<td>24.9</td>
<td>7.33</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.11</td>
<td>-68.31</td>
<td>452</td>
<td>25.6</td>
<td>7.65</td>
<td>232</td>
</tr>
<tr>
<td>4b</td>
<td>TZA A</td>
<td>8.19</td>
<td>-71.5</td>
<td>113.9</td>
<td>22.6</td>
<td>7.44</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.05</td>
<td>-63.8</td>
<td>120.7</td>
<td>23.7</td>
<td>7.47</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.09</td>
<td>-66.6</td>
<td>470</td>
<td>26</td>
<td>4.6</td>
<td>240</td>
</tr>
<tr>
<td>6b</td>
<td>TZA A</td>
<td>8.27</td>
<td>-76.4</td>
<td>111</td>
<td>23.6</td>
<td>7.69</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.2</td>
<td>-61.8</td>
<td>122.4</td>
<td>25.3</td>
<td>8.02</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>8.01</td>
<td>-54.3</td>
<td>477</td>
<td>26.2</td>
<td>4.8</td>
<td>235</td>
</tr>
<tr>
<td>8b</td>
<td>TZA A</td>
<td>8.3</td>
<td>-78.2</td>
<td>107</td>
<td>22.8</td>
<td>7.76</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>8.12</td>
<td>-68</td>
<td>119.2</td>
<td>23.3</td>
<td>7.35</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>7.83</td>
<td>-51.7</td>
<td>481</td>
<td>24.4</td>
<td>7.85</td>
<td>490</td>
</tr>
<tr>
<td>ECA</td>
<td>A1</td>
<td>6,5–8,5</td>
<td>-</td>
<td>1500</td>
<td>-</td>
<td>≥ 6</td>
<td>1000</td>
</tr>
</tbody>
</table>
Tabla A3-2.- Análisis microbiológicos (NMP/100 mL) en agua durante las diez semanas de muestreo en los reservorios A (TZA A) y C (TZA C) del CP de Tzancuvatzarí y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Semana</th>
<th>Reservorio</th>
<th>Coliformes Totales</th>
<th>Coliformes Fecales</th>
<th>E.Coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>TZA A</td>
<td>25</td>
<td>5.9</td>
<td><1.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>185</td>
<td>64</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>2</td>
<td><1.8</td>
<td><1.8</td>
</tr>
<tr>
<td>2a</td>
<td>TZA A</td>
<td>28</td>
<td>6.15</td>
<td><1.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>159.5</td>
<td>41</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>4a</td>
<td>TZA A</td>
<td>49</td>
<td>13</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>130</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>4</td>
<td><1.8</td>
<td><1.8</td>
</tr>
<tr>
<td>6a</td>
<td>TZA A</td>
<td>33</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>240</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>8a</td>
<td>TZA A</td>
<td>41</td>
<td>13</td>
<td><1.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>79</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>2</td>
<td><1.8</td>
<td><1.8</td>
</tr>
<tr>
<td>0b</td>
<td>TZA A</td>
<td>79</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>240</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>4.5</td>
<td><1.8</td>
<td><1.8</td>
</tr>
<tr>
<td>2b</td>
<td>TZA A</td>
<td>49</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>240</td>
<td>49</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>33</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td>4b</td>
<td>TZA A</td>
<td>11</td>
<td>4</td>
<td><1.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>23</td>
<td>7.8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>7.8</td>
<td><1.8</td>
<td><1.8</td>
</tr>
<tr>
<td>6b</td>
<td>TZA A</td>
<td>14</td>
<td>4.5</td>
<td><1.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>33</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>7.8</td>
<td>2</td>
<td><1.8</td>
</tr>
<tr>
<td>8b</td>
<td>TZA A</td>
<td>79</td>
<td>33</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>350</td>
<td>130</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>23</td>
<td>7.8</td>
<td>2</td>
</tr>
<tr>
<td>ECA</td>
<td>A1</td>
<td>50</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabla A3-3.- Análisis de metales (mg/L) en agua durante las diez semanas de muestreo en los reservorios A (TZA A) y C (TZA C) del CP de Tzancuvatziari y San José de la Florida (FLO).

<table>
<thead>
<tr>
<th>Semana</th>
<th>Reservorio</th>
<th>Bario</th>
<th>Manganeso</th>
<th>Estroncio</th>
<th>Vanadio</th>
<th>Zinc</th>
<th>Hierro</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>TZA A</td>
<td>0.0115</td>
<td>0.0220</td>
<td>0.0268</td>
<td>0.0052</td>
<td>0.0021</td>
<td>1.1482</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0124</td>
<td>0.0142</td>
<td>0.0321</td>
<td>0.0035</td>
<td>0.0017</td>
<td>0.5539</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0324</td>
<td>0.0000</td>
<td>0.3733</td>
<td>0.0000</td>
<td>0.0062</td>
<td>0.0085</td>
</tr>
<tr>
<td>2a</td>
<td>TZA A</td>
<td>0.0038</td>
<td>0.0073</td>
<td>0.0089</td>
<td>0.0000</td>
<td>0.0007</td>
<td>0.9772</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0120</td>
<td>0.0052</td>
<td>0.0344</td>
<td>0.0016</td>
<td>0.0073</td>
<td>0.2902</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0340</td>
<td>0.0179</td>
<td>0.4087</td>
<td>0.0000</td>
<td>0.0024</td>
<td><0.0004</td>
</tr>
<tr>
<td>4a</td>
<td>TZA A</td>
<td>0.0082</td>
<td>0.0155</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.1710</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0106</td>
<td>0.0160</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.8891</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0319</td>
<td>0.0124</td>
<td>0.4882</td>
<td>0.0000</td>
<td>0.1857</td>
<td>0.0032</td>
</tr>
<tr>
<td>6a</td>
<td>TZA A</td>
<td>0.0169</td>
<td>0.0213</td>
<td>0.0306</td>
<td>0.0032</td>
<td>0.0029</td>
<td>1.0844</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0151</td>
<td>0.0145</td>
<td>0.0362</td>
<td>0.0028</td>
<td>0.0021</td>
<td>0.7088</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0490</td>
<td>0.0055</td>
<td>0.3716</td>
<td>0.0000</td>
<td>0.0089</td>
<td>0.0051</td>
</tr>
<tr>
<td>8a</td>
<td>TZA A</td>
<td>0.0128</td>
<td>0.0198</td>
<td>0.0327</td>
<td>0.0031</td>
<td>0.0031</td>
<td>1.4244</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0120</td>
<td>0.0113</td>
<td>0.0395</td>
<td>0.0007</td>
<td>0.0025</td>
<td>0.4506</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0489</td>
<td>0.0085</td>
<td>0.3542</td>
<td>0.0000</td>
<td>0.0108</td>
<td>0.0078</td>
</tr>
<tr>
<td>0b</td>
<td>TZA A</td>
<td>0.0120</td>
<td>0.0209</td>
<td>0.0302</td>
<td>0.0042</td>
<td>0.0033</td>
<td>1.4166</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0364</td>
<td>0.0575</td>
<td>0.0323</td>
<td>0.0246</td>
<td>0.0120</td>
<td>0.5946</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0489</td>
<td>0.0047</td>
<td>0.3266</td>
<td>0.0000</td>
<td>0.0048</td>
<td>0.0132</td>
</tr>
<tr>
<td>2b</td>
<td>TZA A</td>
<td>0.0125</td>
<td>0.0295</td>
<td>0.0270</td>
<td>0.0050</td>
<td>0.0135</td>
<td>1.6443</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0115</td>
<td>0.0194</td>
<td>0.0307</td>
<td>0.0027</td>
<td>0.0073</td>
<td>0.4705</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0386</td>
<td>0.0115</td>
<td>0.3433</td>
<td>0.0000</td>
<td>0.0086</td>
<td>0.0927</td>
</tr>
<tr>
<td>4b</td>
<td>TZA A</td>
<td>0.0118</td>
<td>0.0193</td>
<td>0.0267</td>
<td>0.0038</td>
<td>0.0110</td>
<td>1.1399</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0142</td>
<td>0.0246</td>
<td>0.0305</td>
<td>0.0027</td>
<td>0.0149</td>
<td>0.6190</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0436</td>
<td>0.0179</td>
<td>0.3217</td>
<td>0.0000</td>
<td>0.0137</td>
<td>0.0214</td>
</tr>
<tr>
<td>6b</td>
<td>TZA A</td>
<td>0.0172</td>
<td>0.0280</td>
<td>0.0307</td>
<td>0.0044</td>
<td>0.0226</td>
<td>1.1190</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0150</td>
<td>0.0195</td>
<td>0.0254</td>
<td>0.0044</td>
<td>0.0070</td>
<td>1.1680</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0387</td>
<td>0.0090</td>
<td>0.3506</td>
<td>0.0000</td>
<td>0.0123</td>
<td><0.0004</td>
</tr>
<tr>
<td>8b</td>
<td>TZA A</td>
<td>0.0166</td>
<td>0.0235</td>
<td>0.0257</td>
<td>0.0076</td>
<td>0.0101</td>
<td>1.8989</td>
</tr>
<tr>
<td></td>
<td>TZA C</td>
<td>0.0391</td>
<td>0.0573</td>
<td>0.0319</td>
<td>0.0212</td>
<td>0.0260</td>
<td>6.9391</td>
</tr>
<tr>
<td></td>
<td>FLO</td>
<td>0.0351</td>
<td>0.0127</td>
<td>0.3269</td>
<td>0.0000</td>
<td>0.0100</td>
<td>0.1725</td>
</tr>
<tr>
<td>ECA</td>
<td>A1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3000</td>
</tr>
</tbody>
</table>
Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias

DECRETO SUPREMO N° 004-2017-MINAM

EL PRESIDENTE DE LA REPÚBLICA

CONSIDERANDO:

Que, el numeral 22 del artículo 2 de la Constitución Política del Perú establece que toda persona tiene derecho a gozar de un ambiente equilibrado y adecuado al desarrollo de su vida;

Que, de acuerdo a lo establecido en el artículo 3 de la Ley N° 28611, Ley General del Medio Ambiente, en adelante la Ley, el Estado, a través de sus entidades y órganos correspondientes, diseña y aplica, entre otros, las normas que sean necesarias para garantizar el efectivo ejercicio de los derechos y el cumplimiento de las obligaciones y responsabilidades contenidas en la Ley;

Que, el numeral 31.1 del artículo 31 de la Ley, define al Estándar de Calidad Ambiental (ECA) como la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y microbiológicos, presentes en el aire, agua o suelo, en su condición de cuerpo receptor, que no representa riesgo significativo para la salud de las personas ni al ambiente; asimismo, el numeral 31.2 del artículo 31 de la Ley establece que el ECA es obligatorio en el diseño de las normas legales y las políticas públicas, así como un referente obligatorio en el diseño y aplicación de todos los instrumentos de gestión ambiental;

Que, de acuerdo con lo establecido en el numeral 33.1 del artículo 33 de la Ley, la Autoridad Ambiental Nacional dirige el proceso de elaboración y revisión de ECA y Límites Máximos Permitibles (LMP) y, en coordinación con los sectores correspondientes, elabora o encarga las propuestas de ECA y LMP, los que serán remitidos a la Presidencia del Consejo de Ministros para su aprobación mediante Decreto Supremo;

Que, en virtud a lo dispuesto por el numeral 33.4 del artículo 33 de la Ley, en el proceso de revisión de los parámetros de contaminación ambiental, con la finalidad de determinar nuevos niveles de calidad, se aplica el principio de gradualidad, permitiendo ajustes progresivos a dichos niveles para las actividades en curso;

Que, de conformidad con lo establecido en el literal d) del artículo 7 del Decreto Legislativo N° 1013, Ley de Creación, Organización, y Funciones del Ministerio del Ambiente, este ministerio tiene como función específica elaborar los ECA y LMP, los cuales deberán contar con la opinión del sector correspondiente y ser aprobados mediante Decreto Supremo;

Que, mediante Decreto Supremo N° 002-2008-MINAM se aprueban los ECA para Agua y, a través del Decreto Supremo N° 023-2009-MINAM, se aprueban las disposiciones para su aplicación;

Que, asimismo, mediante Decreto Supremo N° 015-2015-MINAM se modifican los ECA para Agua y se establecen disposiciones complementarias para su aplicación;

Que, mediante Resolución Ministerial N° 331-2016-MINAM se crea el Grupo de Trabajo encargado de establecer medidas para optimizar la calidad ambiental, estableciendo como una de sus funciones específicas, el analizar y proponer medidas para mejorar la calidad ambiental en el país;

Que, en mérito del análisis técnico realizado se ha identificado la necesidad de modificar, precisar y unificar la normatividad vigente que regula los ECA para agua;

Que, mediante Resolución Ministerial N° 072-2017-MINAM, se dispuso la prepublicación del proyecto normativo, en cumplimiento del Reglamento sobre Transparencia, Acceso a la Información Pública Ambiental y Participación y Consulta Ciudadana en Asuntos Ambientales, aprobado por Decreto Supremo N° 002-2009-MINAM, y el artículo 14 del Reglamento que establece disposiciones relativas a la publicidad,

publicación de Proyectos Normativos y difusión de Normas Legales de Carácter General, aprobado por Decreto Supremo N° 001-2009-JUS; en virtud de la cual se recibieron aportes y comentarios al mismo;

De conformidad con lo dispuesto en el numeral 8 del artículo 118 de la Constitución Política del Perú, así como el numeral 3 del artículo 11 de la Ley N° 29158, Ley Orgánica del Poder Ejecutivo;

DECRETA:

Artículo 1.- Objeto de la norma

La presente norma tiene por objeto compilar las disposiciones aprobadas mediante el Decreto Supremo N° 002-2008-MINAM, el Decreto Supremo N° 023-2009-MINAM y el Decreto Supremo N° 015-2015-MINAM, que aprueban los Estándares de Calidad Ambiental (ECA) para Agua, quedando sujetos a lo establecido en el presente Decreto Supremo y el Anexo que forma parte integrante del mismo. Esta compilación normativa modificó y eliminó algunos valores, parámetros, categorías y subcategorías de los ECA, y mantiene otros, que fueron aprobados por los referidos decretos supremos.

Artículo 2.- Aprobación de los Estándares de Calidad Ambiental para Agua

Aprueban los Estándares de Calidad Ambiental (ECA) para Agua, que como Anexo forman parte integrante del presente Decreto Supremo.

Artículo 3.- Categorías de los Estándares de Calidad Ambiental para Agua

Para la aplicación de los ECA para Agua se debe considerar las siguientes precisiones sobre sus categorías:

3.1 Categoría 1: Poblacional y recreacional

a) Subcategoría A: Aguas superficiales destinadas a la producción de agua potable

Entiéndase como aquellas aguas que, previo tratamiento, son destinadas para el abastecimiento de agua para consumo humano:

- A1. Aguas que pueden ser potabilizadas con desinfección

Entiéndase como aquellas aguas que, por sus características de calidad, reúnen las condiciones para ser destinadas al abastecimiento de agua para consumo humano con simple desinfección, de conformidad con la normativa vigente.

- A2. Aguas que pueden ser potabilizadas con tratamiento convencional

Entiéndase como aquellas aguas destinadas al abastecimiento de agua para consumo humano, sometidas a un tratamiento convencional, mediante dos o más de los siguientes procesos: Coagulación, flocculación, decantación, sedimentación, y/o filtración o procesos equivalentes; incluyendo su desinfección, de conformidad con la normativa vigente.

- A3. Aguas que pueden ser potabilizadas con tratamiento avanzado

Entiéndase como aquellas aguas destinadas al abastecimiento de agua para consumo humano, sometidas a un tratamiento convencional que incluye procesos físicos y químicos avanzados como precloración, microfiltración, ultra filtración, nanofiltración, carbón activado, osmosis inversa o procesos equivalentes establecidos por el sector competente.

b) Subcategoría B: Aguas superficiales destinadas para recreación

Entiéndase como aquellas aguas destinadas al uso recreativo que se ubican en zonas marino costeras o continentales. La amplitud de las zonas marino costeras es variable y comprende la franja de mar entre el límite de la tierra hasta los 500 m de la línea paralela de baja marea. La amplitud de las zonas continentales es definida por la autoridad competente;
3.1 Categoría 2: Extracción, cultivo y otras actividades marino costeras y continentales

a) Subcategoría C1: Extracción y cultivo de moluscos, equinodermos y tunicados en aguas marino costeras

Entiéndase como aquellas aguas cuyo uso está destinado a la extracción o cultivo de moluscos (Ej.: ostras, almejas, choros, navajas, machas, conchas de abanico, palabritas, mejillones, almejas, conchas de caracol, lapa, entre otros), equinodermos (Ej.: erizos y estrella de mar) y tunicados.

b) Subcategoría C2: Extracción y cultivo de otras especies hidrobiológicas en aguas marino costeras

Entiéndase como aquellas aguas cuyo uso está destinado a la extracción o cultivo de otras especies hidrobiológicas para el consumo humano directo e indirecto. Esta subcategoría comprende a los peces y las algas comestibles.

c) Subcategoría C3: Actividades marino portuarias, industriales o de saneamiento en aguas marino costeras

Entiéndase como aquellas aguas aledañas a las infraestructuras marino portuarias, actividades industriales o servicios de saneamiento como los emisarios submarinos.

d) Subcategoría C4: Extracción y cultivo de especies hidrobiológicas en lagos o lagunas

Entiéndase como aquellas aguas cuyo uso está destinado a la extracción o cultivo de especies hidrobiológicas para consumo humano.

3.2 Categoría 3: Riego de vegetales y bebida de animales

a) Subcategoría D1: Riego de vegetales

Entiéndase como aquellas aguas utilizadas para el riego de los cultivos vegetales, las cuales, dependiendo de factores como el tipo de riego empleado en los cultivos, la clase de consumo utilizado (crudo o cocido) y los posibles procesos industriales o de transformación a los que puedan ser sometidos los productos agrícolas.

- Agua para riego no restringido

Entiéndase como aquellas aguas cuya calidad permite su utilización en el riego de: cultivos alimenticios que se consumen crudos (Ej.: hortalizas, plantas frutales de tallo bajo o similares); cultivos de árboles o frutales, con sistema de riego por aspersión, donde el fruto o partes comestibles entran en contacto directo con el agua de riego, aun cuando estos sean de tallo alto; parques públicos, campos deportivos, áreas verdes y plantas ornamentales; o cualquier otro tipo de cultivo.

- Agua para riego restringido

Entiéndase como aquellas aguas cuya calidad permite su utilización en el riego de: cultivos alimenticios que se consumen cocidos (Ej.: habas); cultivos de tallo alto en los que el agua de riego no entra en contacto con el fruto (Ej.: árboles frutales); cultivos a ser procesados, envasados y/o industrializados (Ej.: trigo, arroz, avena y quinua); cultivos industriales no comestibles (Ej.: algodón); y cultivos forestales, forrajes, pastos o similares (Ej.: maíz forrajeo y alfalfa).

b) Subcategoría D2: Bebida de animales

Entiéndase como aquellas aguas utilizadas para bebida de animales mayores como ganado vacuno, equino o camélido, y para animales menores como ganado porcino, ovino, caprino, cuyes, aves y conejos.

3.3 Categoría 4: Conservación del ambiente acuático

Entiéndase como aquellos cuerpos naturales de agua superfi ciales que forman parte de ecosistemas frágiles, áreas naturales protegidas y/o zonas de amortiguamiento, cuyas características requieren ser protegidas.

a) Subcategoría E1: Lagunas y lagos

Entiéndase como aquellos cuerpos naturales de agua lenticos, que no presentan corriente continua, incluyendo humedales.

b) Subcategoría E2: Ríos

Entiéndase como aquellos cuerpos naturales de agua líticos, que se mueven continuamente en una misma dirección.

- Ríos de la costa y sierra

Entiéndase como aquellos ríos y sus afluentes, comprendidos en la vertiente hidrográfica del Pacífico y de la Selva, en la parte alta de la vertiente oriental de la Cordillera de los Andes, por encima de los 600 msnm.

- Ríos de la selva

Entiéndase como aquellos ríos y sus afluentes, comprendidos en la parte baja de la vertiente oriental de la Cordillera de los Andes, por debajo de los 600 msnm, incluyendo las zonas meándricas.

c) Subcategoría E3: Ecosistemas costeros y marinos

- Estuarios

Entiéndase como aquellas zonas donde el agua de mar ingresa en valles o cauces de ríos hasta el límite superior del nivel de marea. Esta clasificación incluye marismas y manglares.

- Marinos

Entiéndase como aquellas zonas del mar comprendidas desde la línea paralela de baja marea hasta el límite marítimo nacional. Precítese que no se encuentran comprendidas dentro de las categorías señaladas, las aguas marinas con fines de potabilización, las aguas subterráneas, las aguas de origen minero - medicinal, aguas geotermas, aguas atmosféricas y las aguas residuales tratadas para reuso.

Artículo 4.- Asignación de categorías a los cuerpos naturales de agua

4.1 La Autoridad Nacional del Agua es la entidad encargada de asignar a cada cuerpo natural de agua las categorías establecidas en el presente Decreto Supremo atendiendo a sus condiciones naturales o niveles de fondo, de acuerdo al marco normativo vigente.

4.2 En caso se identifique dos o más posibles categorías para una zona determinada de un cuerpo natural de agua, la Autoridad Nacional del Agua define la categoría aplicable, priorizando el uso poblacional.

Artículo 5.- Los Estándares de Calidad Ambiental para Agua como referente obligatorio

5.1 Los parámetros de los ECA para Agua que se aplican como referente obligatorio en el diseño y aplicación de los instrumentos de gestión ambiental, se determinan considerando las siguientes variables, según corresponda:

a) Los parámetros asociados a los contaminantes que caracterizan al efluente del proyecto o la actividad productiva, extractiva o de servicios.

b) Las condiciones naturales que caracterizan el estado de la calidad ambiental de las aguas superfi ciales que no han sido alteradas por causas antrópicas.

c) Los niveles de fondo de los cuerpos naturales de agua; que proporcionan información acerca de las concentraciones de sustancias o agentes físicos,
oría o -

a) El efecto de otras descargas en la zona, tomando en consideración los impactos ambientales acumulativos y sintéticos que se presenten aguas arriba y aguas abajo de la descarga del efluente, y que influyan en el estado actual de la calidad ambiental de los cuerpos naturales de agua donde se realiza la actividad.

b) Otras características particulares de la actividad o del entorno que pueden influir en la calidad ambiental de los cuerpos naturales de agua.

51 La aplicación de los ECA para Agua como referente obligatorio está referida a los parámetros que se identificaron considerando las variables del numeral anterior, según corresponda, sin incluir necesariamente todos los parámetros establecidos para la categoría o subcategoría correspondiente.

Artículo 6.- Consideraciones de excepción para la aplicación de los Estándares de Calidad Ambiental para Agua

En aquellos cuerpos naturales de agua que por sus condiciones naturales o, por la influencia de fenómenos naturales, presenten parámetros en concentraciones superiores a la categoría de ECA para Agua asignada, se exceptúa la aplicación de los mismos para efectos del monitoreo de la calidad ambiental, en tanto se mantenga uno o más de los siguientes supuestos:

a) Características geográficas de los suelos y subsueltas que influyan en la calidad ambiental de determinados cuerpos naturales de aguas superficiales. Para estos casos, se demostrará esta condición natural con estudios técnicos científicos que sustenten la influencia natural de una zona en particular sobre la calidad ambiental de los cuerpos naturales de agua, aprobados por la Autoridad Nacional del Agua.

b) Ocurrimiento de fenómenos naturales extremos, que determinan condiciones por exceso (inundaciones) o por carencia (sequías) de sustancias o elementos que componen el cuerpo natural de agua, las cuales deben ser reportadas con el respectivo sustento técnico.

c) Desbalance de nutrientes debido a causas naturales, que a su vez generen eutrofización o el crecimiento excesivo de organismos acuáticos, en algunos casos potencialmente tóxicos (mareas rojas). Para tal efecto, se debe demostrar el origen natural del desbalance de nutrientes, mediante estudios técnicos científicos aprobados por la autoridad competente.

d) Otras condiciones debidamente comprobadas mediante estudios o informes técnicos científicos actualizados y aprobados por la autoridad competente.

Artículo 7.- Verificación de los Estándares de Calidad Ambiental para Agua fuera de la zona de mezcla

7.1 En cuerpos naturales de agua donde se viertan aguas tratadas, la Autoridad Nacional del Agua verifica el cumplimiento de los ECA para Agua fuera de la zona de mezcla, entendida esta zona como aquella que contiene el volumen de agua en el cuerpo receptor donde se logra la dilución del vertimiento por procesos hidrodinámicos y dispersión, sin considerar otros factores como el decaimiento bacteriano, sedimentación, asimilación en materia orgánica y precipitación química.

7.2 Durante la evaluación de los instrumentos de gestión ambiental, las autoridades competentes consideran y/o verifican el cumplimiento de los ECA para Agua fuera de la zona de mezcla, en aquellos parámetros asociados prioritariamente a los contaminantes que caracterizan al efluente del proyecto o actividad.

7.3 La metodología y aspectos técnicos para la determinación de las zonas de mezcla serán establecidos por la Autoridad Nacional del Agua, en coordinación con el Ministerio del Ambiente y la autoridad competente.

Artículo 8.- Sistematización de la información

8.1 Las autoridades competentes de los tres niveles de gobierno, que realicen acciones de vigilancia, monitoreo, control, supervisión y/o fiscalización ambiental remitirán al Ministerio del Ambiente la información generada en el desarrollo de estas actividades con relación a la calidad ambiental de los cuerpos naturales de agua, a fin de que sirva como insumo para la elaboración del Informe Nacional del Estado del Ambiente y para el Sistema Nacional de Información Ambiental (SINA).

8.2 La autoridad competente debe remitir al Ministerio del Ambiente la relación de aquellos cuerpos naturales de agua exceptuados de la aplicación del ECA para Agua, referidos en los literales a) y c) del artículo 6 del presente Decreto Supremo, adjuntando el sustento técnico correspondiente.

8.3 El Ministerio del Ambiente establece los procedimientos, plazos y los formatos para la remisión de la información.

Artículo 9.- Refrendo

El presente Decreto Supremo es refrendado por la Ministra del Ambiente, el Ministro de Agricultura y Riego, el Ministro de Energía y Minas, la Ministra de Salud, el Ministro de la Producción y el Ministro de Vivienda, Construcción y Saneamiento.

DISPOSICIONES COMPLEMENTARIAS FINALES

Primera.- Aplicación de los Estándares de Calidad Ambiental para Agua en los instrumentos de gestión ambiental aprobados

La aplicación de los ECA para Agua en los instrumentos de gestión ambiental, que sean de carácter preventivo, se realiza en la actualización o modificación de los mismos, en el marco de la normativa vigente del Sistema Nacional de Evaluación del Impacto Ambiental (SEIA). En el caso de instrumentos correctivos, la aplicación de los ECA para Agua se realiza conforme a la normativa ambiental sectorial.

Segunda.- Del Monitoreo de la Calidad Ambiental del Agua

Las acciones de vigilancia y monitoreo de la calidad del agua debe realizarse de acuerdo al Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales aprobado por la Autoridad Nacional del Agua.

Tercera.- Métodos de ensayo o técnicas analíticas

El Ministerio del Ambiente, en un plazo no mayor a seis (6) meses contado desde la vigencia de la presente norma, establece los métodos de ensayo o técnicas analíticas aplicables a la medición de los ECA para Agua aprobados por la presente norma, en coordinación con el Instituto Nacional de Calidad (INACAL) y las autoridades competentes.

DISPOSICIONES COMPLEMENTARIAS TRANSITORIAS

Primera.- Instrumento de gestión ambiental y/o plan integral en trámite ante la Autoridad Competente

Los titulares que antes de la fecha de entrada en vigencia de la norma, hayan iniciado un procedimiento administrativo para la aprobación del instrumento de gestión ambiental y/o plan integral ante la autoridad competente, tomarán en consideración los ECA para Agua vigentes a la fecha de inicio del procedimiento.

Luego de aprobado el instrumento de gestión ambiental por la autoridad competente, los titulares deberán considerar lo establecido en la Primera Disposición Complementaria Final, a efectos de aplicar los ECA para Agua aprobados mediante el presente Decreto Supremo.

Segunda.- De la autorización de vertimiento de aguas residuales tratadas

Para la autorización de vertimiento de aguas residuales tratadas, la Autoridad Nacional del Agua, tomará en cuenta los ECA para Agua considerados en la aprobación del instrumento de gestión ambiental correspondiente.

Tercera.- De la aplicación de los Estándares de Calidad Ambiental para Agua en cuerpos naturales de agua no categorizados

En tanto la Autoridad Nacional del Agua no haya asignado una categoría a un determinado cuerpo natural de agua, se debe aplicar la categoría del
DISPOSICIÓN COMPLEMENTARIA DEROGATORIA

Única.- Derogación de normas referidas a Estándares de Calidad Ambiental para Agua

Derógase el Decreto Supremo N° 002-2008-MINAM, el Decreto Supremo N° 023-2009-MINAM y el Decreto Supremo N° 015-2015-MINAM.

Dado en la Casa de Gobierno, en Lima, a los seis días del mes de junio del año dos mil diecisiete.

PEDRO PABLO KUCZYNSKI GODARD
Presidente de la República

JOSÉ MANUEL HERNÁNDEZ CALDERÓN
Ministro de Agricultura y Riego

ELSA GALARZA CONTRERAS
Ministra del Ambiente

GONZALO TAMAYO FLORES
Ministro de Energía y Minas

PEDRO OLAECHEA ÁLVAREZ-CALDERÓN
Ministro de la Producción

PATRICIA J. GARCÍA FUNEGRA
Ministra de Salud

EDMER TRUJILLO MORI
Ministro de Vivienda, Construcción y Saneamiento

ANEXO

Categoría 1: Poblacional y Recreacional

Subcategoría A: Aguas superficiales destinadas a la producción de agua potable

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Unidad de medida</th>
<th>A1 (Aguas que pueden ser potabilizadas con desinfección)</th>
<th>A2 (Aguas que pueden ser potabilizadas con tratamiento convencional)</th>
<th>A3 (Aguas que pueden ser potabilizadas con tratamiento avanzado)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FÍSICOS- QUÍMICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceites y Grasas</td>
<td>mg/L</td>
<td>0,5</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Cianuro Total</td>
<td>mg/L</td>
<td>0,07</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Cianuro Libre</td>
<td>mg/L</td>
<td>**</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Cloruros</td>
<td>mg/L</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Color (b)</td>
<td>Color verdadero Escala Pt/Co</td>
<td>15</td>
<td>100 (a)</td>
<td>**</td>
</tr>
<tr>
<td>Conductividad</td>
<td>(µS/cm)</td>
<td>1 500</td>
<td>1 600</td>
<td>**</td>
</tr>
<tr>
<td>Demanda Bioquímica de Oxígeno (DBO₅)</td>
<td>mg/L</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Dureza</td>
<td>mg/L</td>
<td>500</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Demanda Química de Oxígeno (DO₅)</td>
<td>mg/L</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Fenoles</td>
<td>mg/L</td>
<td>0,003</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Fluoruros</td>
<td>mg/L</td>
<td>1,5</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Fósforo Total</td>
<td>mg/L</td>
<td>0,1</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Materiales Flotantes de Origen Antropogénico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiales Flotantes de Origen Antropogénico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INORGÁNICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td>mg/L</td>
<td>0,9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Antimonio</td>
<td>mg/L</td>
<td>0,02</td>
<td>0,02</td>
<td>**</td>
</tr>
<tr>
<td>Arsénico</td>
<td>mg/L</td>
<td>0,01</td>
<td>0,01</td>
<td>0,15</td>
</tr>
<tr>
<td>Bario</td>
<td>mg/L</td>
<td>0,7</td>
<td>1</td>
<td>**</td>
</tr>
<tr>
<td>Berilio</td>
<td>mg/L</td>
<td>0,012</td>
<td>0,04</td>
<td>0,1</td>
</tr>
<tr>
<td>Boro</td>
<td>mg/L</td>
<td>2,4</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Cadmio</td>
<td>mg/L</td>
<td>0,003</td>
<td>0,005</td>
<td>0,01</td>
</tr>
<tr>
<td>Cobre</td>
<td>mg/L</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cromo Total</td>
<td>mg/L</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg/L</td>
<td>0,3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Manganeso</td>
<td>mg/L</td>
<td>0,4</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Mercurio</td>
<td>mg/L</td>
<td>0,001</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>Parámetros</td>
<td>Unidad de medida</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Níquel</td>
<td>mg/L</td>
<td>0,07</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg/L</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Selenio</td>
<td>mg/L</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>Uranio</td>
<td>mg/L</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ORGÁNICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrocarburos Totales de Petróleo (C₈ - C₄₀)</td>
<td>mg/L</td>
<td>0,01</td>
<td>0,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Trihalometanos (e)</td>
<td></td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Bromoformo</td>
<td>mg/L</td>
<td>0,1</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Cloroformo</td>
<td>mg/L</td>
<td>0,3</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Dibromoclorometano</td>
<td>mg/L</td>
<td>0,1</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Bromodiclorometano</td>
<td>mg/L</td>
<td>0,06</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>I. COMPUESTOS ORGÁNICOS VOLÁTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1- Tricloroetano</td>
<td>mg/L</td>
<td>0,2</td>
<td>0,2</td>
<td>**</td>
</tr>
<tr>
<td>1,1,2 Dicloroetano</td>
<td>mg/L</td>
<td>0,03</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>1,2 Diclorobenceno</td>
<td>mg/L</td>
<td>1</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Hexaclorobutadieno</td>
<td>mg/L</td>
<td>0,0006</td>
<td>0,0006</td>
<td>**</td>
</tr>
<tr>
<td>Tetrachloroeteno</td>
<td>mg/L</td>
<td>0,04</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Tetrachloruro de carbono</td>
<td>mg/L</td>
<td>0,004</td>
<td>0,004</td>
<td>**</td>
</tr>
<tr>
<td>Tricloroeteno</td>
<td>mg/L</td>
<td>0,07</td>
<td>0,07</td>
<td>**</td>
</tr>
<tr>
<td>STEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benceno</td>
<td>mg/L</td>
<td>0,01</td>
<td>0,01</td>
<td>**</td>
</tr>
<tr>
<td>Etibenceno</td>
<td>mg/L</td>
<td>0,3</td>
<td>0,3</td>
<td>**</td>
</tr>
<tr>
<td>Tolueno</td>
<td>mg/L</td>
<td>0,7</td>
<td>0,7</td>
<td>**</td>
</tr>
<tr>
<td>Xileno</td>
<td>mg/L</td>
<td>0,5</td>
<td>0,5</td>
<td>**</td>
</tr>
<tr>
<td>Hidrocarburos Aromáticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pireno</td>
<td>mg/L</td>
<td>0,0007</td>
<td>0,0007</td>
<td>**</td>
</tr>
<tr>
<td>Pentaclorofenol (PCP)</td>
<td>mg/L</td>
<td>0,009</td>
<td>0,009</td>
<td>**</td>
</tr>
<tr>
<td>Organoclorados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malatón</td>
<td>mg/L</td>
<td>0,19</td>
<td>0,0001</td>
<td>**</td>
</tr>
<tr>
<td>ORGÁNICOS Y PARÁSITOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldicarb</td>
<td>mg/L</td>
<td>0,01</td>
<td>0,01</td>
<td>**</td>
</tr>
<tr>
<td>Microcistina-LR</td>
<td>mg/L</td>
<td>0,001</td>
<td>0,001</td>
<td>**</td>
</tr>
<tr>
<td>III. BIFENILOS POLICLORADOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifenilos Policlorados (PCB)</td>
<td>mg/L</td>
<td>0,0005</td>
<td>0,0005</td>
<td>**</td>
</tr>
<tr>
<td>MICROBIOLOGICOS Y PARASITOLÓGICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>NMP/100 ml</td>
<td>50</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Coliformes Termotolerantes</td>
<td>NMP/100 ml</td>
<td>20</td>
<td>2 000</td>
<td>20 000</td>
</tr>
<tr>
<td>Formas Parasitarias</td>
<td>N° Organismo/L</td>
<td>0</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>NMP/100 ml</td>
<td>0</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Presencia/100 ml</td>
<td>Ausencia</td>
<td>Ausencia</td>
<td>Ausencia</td>
</tr>
<tr>
<td>Organismos de vida libre (algas, protozoarios, copépodos, rotíferos, nematodos, en todos sus estados evolutivos) (f)</td>
<td>N° Organismo/L</td>
<td>0</td>
<td><5x10⁶</td>
<td><5x10⁶</td>
</tr>
</tbody>
</table>

(a) 100 (para aguas claras). Sin cambio anormal (para aguas que presentan coloración natural).
(b) Después de la filtración simple.
(c) En caso las técnicas analíticas determinen la concentración en unidades de Nitratos-N (NO₃-N), multiplicar el.
MANUAL PARA EL BIOFILTRO DE MUSGO SPHAGNUM MAGELLANICUM

DISEÑO, CONSTRUCCIÓN, INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO

UN MANUAL DE CAPACITACIÓN Y ENTRENAMIENTO

PREPARADO POR SHADIA PAZ MAJLUF Y RAÚL LOAYZA MURO PARA INKA MOSS S.A.C.
Inka Moss es una empresa dedicada a la explotación sostenible y ambientalmente limpia del musgo *Sphagnum* con fines de exportación, con impacto económico en las zonas alto andinas de nuestro país, transformando la materia prima en un producto de mayor calidad y con un valor agregado que satisface al exigente mercado internacional.

Contar con agua limpia y servicios de salubridad básicos son aspectos fundamentales para empuñar a las comunidades más pobres del mundo y romper el ciclo de la pobreza. Para Inka Moss, el mayor objetivo de este desafío es enseñar a las personas las habilidades necesarias para tener agua limpia y segura en sus hogares. Por eso, tenemos como tarea transferir este conocimiento y habilidades a las organizaciones y personas que se encuentran en países en vías de desarrollo, a través de servicios de educación, capacitación y consultoría.

En el presente documento se desarrolla un manual de los procesos implicados en la elaboración del prototipo de biofiltro de agua hecho a base del musgo *Sphagnum magellanicum*.

El usuario de este manual tendrá la libertad de:

- compartir – copiar, distribuir y transmitir este documento
- combinar – adaptar este documento de acuerdo con necesidades específicas

En circunstancias ideales, el biofiltro puede producir agua de consumo humano de alta calidad. No obstante, no siempre se puede asegurar o garantizar esta situación debido a las variaciones en la construcción, instalación, operación y mantenimiento del filtro. Por ello, Inka Moss no se hace responsable por cualquier ocurrencia que pudiera resultar del uso de la información provista en este documento o sus anexos. Esta liberación de responsabilidad también se hace extensiva al uso y consumo del agua del biofiltro de musgo, pues podrían existir ciertos contaminantes que no pueda remover.
ABREVIATURAS

- cm: centímetro
- kg: kilogramo
- L: litro
- m: metro
- min: minuto
- mm: milímetro
- m³: metro cúbico

CONVERSIÓN DE MEDIDAS

Longitud o distancia

1 pie = 0.30 metros
1 pulgada = 2.54 cm
1 mm = 0.1 cm

1 metro = 3.28 pies
1 cm = 0.39 pulgadas
1 cm = 10 mm

Volumen

1 galón = 3.78 litros

1 litro = 0.26 galones

Área

1 m² = 10.76 pies²

1 pie² = 0.09 m²
<table>
<thead>
<tr>
<th>GLOSARIO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorción</td>
<td>Cuando un contaminante se adhiere por sí solo a la superficie de un sólido</td>
</tr>
<tr>
<td>Bacterias</td>
<td>Microorganismos Unicelulares, Generalmente De Unos Pocos Micrones (µm) De Longitud</td>
</tr>
<tr>
<td>Calidad del agua</td>
<td>Características químicas, físicas y microbiológicas del agua. La calidad del agua que se va a emplear depende del uso que va a tener</td>
</tr>
<tr>
<td>Contaminación</td>
<td>Alteración de las propiedades del agua debido a causas naturales o provocadas por la mano del hombre</td>
</tr>
<tr>
<td>Desinfección</td>
<td>Todo proceso que extrae desactiva o mata los patógenos que se encuentran en el agua.</td>
</tr>
<tr>
<td>Filtración</td>
<td>Proceso que consiste en dejar pasar el agua a través de materiales porosos, como por ejemplo, arena, grava o malla, para retirar sólidos suspendidos o patógenos. Es el segundo paso del proceso de tratamiento de agua en hogares, que se hace después de la sedimentación y antes de la desinfección</td>
</tr>
<tr>
<td>Higiene</td>
<td>Costumbres, como por ejemplo el lavarse las manos, que ayudan a mantener la limpieza y la buena salud</td>
</tr>
<tr>
<td>Implementación</td>
<td>El proceso de llevar a cabo un plan. La fase de implementación ocurre después de elaborar un plan</td>
</tr>
<tr>
<td>Patógeno</td>
<td>Cualquier organismo viviente que causa enfermedades. Los patógenos que comúnmente se encuentran en el agua incluyen bacterias, virus, protozoarios y helmintos.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Salubridad</td>
<td>Mantener condiciones limpias e higiénicas que ayudan a prevenir la aparición de enfermedades a través de servicios, como recolección de basura, eliminación de aguas cloacales y uso de letrinas</td>
</tr>
<tr>
<td>Sedimentación</td>
<td>Proceso que se usa para precipitar los sólidos suspendidos en el agua bajo la influencia de la gravedad</td>
</tr>
<tr>
<td>Sólidos disueltos</td>
<td>Partículas pequeñas que están disueltas en el agua. No se pueden remover mediante sedimentación o filtración</td>
</tr>
<tr>
<td>Sólidos</td>
<td>Partículas sólidas pequeñas que flotan en el agua, causando turbidez.</td>
</tr>
<tr>
<td>Sorbente</td>
<td>Materiales que trabajan con dos principios: absorción (permite que el material opere como esponja y recolecte la sustancia por acción capilar) y adsorción (los materiales en los que prima este mecanismo dependen de una extensa área superficial y afinidad química del material adsorbente sobre la sustancia)</td>
</tr>
<tr>
<td>Turbidez</td>
<td>Fenómeno causado por sólidos suspendidos, como arena, limo o arcilla, que flotan en el agua. La turbidez es la cantidad de luz que se refleja desde estos sólidos suspendidos, que hace que el agua se vea turbia o sucia. La turbidez se mide en unidades nefelométricas de turbidez (unt)</td>
</tr>
</tbody>
</table>
BIOFILTRO DE MUSGO – GENERALIDADES

1. El musgo *Sphagnum magellanicum*

Sphagnum magellanicum, conocido localmente como musgo blanco, es un musgo que coloniza terrenos anegados en los Andes del Perú. En los últimos años se ha hecho conocido por sus múltiples aplicaciones de utilidad para el hombre; sin embargo, forma parte del paisaje desde tiempos inmemorables.

Debido a condiciones muy particulares de estos ecosistemas, tienden a acumular grandes cantidades de carbono en forma de materia orgánica semi-descompuesta, la cual se conoce por el nombre de turba. En el mundo, *Sphagnum* constituye la vegetación predominante de las turberas. Estos tipos de humedales tuvieron su origen después del último período glacial.

2. ¿Qué es un biofiltro?

Un biofiltro es un sistema de filtración que incorpora elementos biológicos que realizan o ayudan en el proceso de filtración del agua. El biofiltro de musgo está adaptado para las condiciones rurales, por ende tiene un uso continuo, lo cual lo hace muy apropiado para tenerlo en los reservorios de agua.

3. ¿Cómo funciona el biofiltro de musgo?

Los patógenos y los sólidos suspendidos se extraen a través de la combinación de procesos biológicos y químicos que se dan lugar en la superficie del musgo, el cual es un material sorbente. El agua contaminada ingresa en el reservorio de manera constante, y por medio de la adsorción del musgo, tanto los metales como los coliformes se van impregnando en él; de forma que los contaminantes quedan retenidos en el musgo *Sphagnum*.
4. Fuente de agua

El biofiltro de musgo puede utilizarse con agua proveniente de: agua de lluvia, agua subterránea profunda o somera, ríos, lagos u otras superficies. La fuente de agua debe ser la más limpia que pueda obtenerse, ya que el filtro no puede remover el 100% de los patógenos, metales y turbidez. Cabe resaltar que este tratamiento solo es apto para tratas aguas residuales (ganaderas, industriales, negras, etc.) solo si está acompañado de algún tratamiento químico especializado.

BIOFILTRO DE MUSGO – CONSTRUCCIÓN

El biofiltro se elaboró a partir de cartuchos de musgo de 800 gr. los cuales tienen una combinación en proporciones de 70%:30% de fibra de musgo de tipo A (5cm - 10cm): polvillo de musgo. Fue compactado en cartuchos de 32 cm x 32 cm x 11 cm mediante una prensa hidráulica a 300 psi. Asimismo, se resaltan dos componentes de armado:

- Malla mosquitera – Contenedor del musgo.
- Musgo prensado – Absorbe los contaminantes y purifica el agua.
A continuación, se describen las instrucciones para la construcción, instalación, operación y mantenimiento del biofiltro de musgo.

Etapa A – Obtener las herramientas y materiales

Etapa B – Ubicar el lugar de posicionamiento del biofiltro

Etapa C – Limpiar el reservorio

Etapa D – Construir el cuerpo del biofiltro

Etapa E – Colocar los cartuchos de musgo dentro del cuerpo

Etapa F – Instalar el biofiltro en el reservorio de agua deseado

Etapa G – Operación, mantenimiento y seguimiento
Etapas A – Obtener las herramientas y materiales

Para construir e instalar un biofiltro de musgo de manera fácil y adecuada se necesita un buen juego de herramientas. Son herramientas manuales, las cuales servirán para muchas armadas si es que se las mantiene y utiliza de manera adecuada.

También es necesario identificar un espacio adecuado para trabajar en el que pueda proteger y almacenar sus herramientas e insumos. Para la construcción del biofiltro se necesitan las siguientes herramientas y materiales:

<table>
<thead>
<tr>
<th>Cantidades</th>
<th>Herramientas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tijera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantidades</th>
<th>Materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 m</td>
<td>Malla mosquitera mesh de fibra de vidrio</td>
</tr>
<tr>
<td>1</td>
<td>Rollo de hilo de pescar de 0.60 mm</td>
</tr>
<tr>
<td>1</td>
<td>Regla de 30 cm</td>
</tr>
<tr>
<td>1</td>
<td>Plumón negro grueso</td>
</tr>
<tr>
<td>5</td>
<td>Cartuchos de musgo de 800 gr.</td>
</tr>
</tbody>
</table>

Etapas B – Ubicar el lugar de posicionamiento del biofiltro

La selección del reservorio donde se colocará el biofiltro es un paso crucial para la eficiencia del tratamiento del agua. Aunque la tarea no es complicada, es necesario que el reservorio tenga las siguientes características:

- De preferencia escoger un reservorio cerrado con tapa
- El agua del reservorio no debe ser agua residual de ningún tipo (ganadería, industrial, grises, doméstico, etc.)
Etapa C – Limpiar el reservorio

Una adecuada desinfección del reservorio donde será colocado el/los biofiltros deben ser realizada con el propósito de reducir los contaminantes y amplificar la capacidad limpiadora del musgo. Según el tipo de material y la forma del reservorio, el método de limpieza podría variar ligeramente, sin embargo, se debe seguir el siguiente procedimiento estándar de limpieza:

1. Vaciar el reservorio de agua.
2. Limpiar las paredes internas del reservorio con detergente y escobillar con detalle las esquinas.
3. Limpiar las paredes internas del reservorio con un paño impregnado en lejía y tener especial cuidado con las esquinas.
4. Llenar el reservorio de agua y dejar correr el agua durante 10 minutos.

Etapa D y E – Construir el cuerpo del filtro

Reunir todos los materiales en un espacio de trabajo cómodo y amplio para su construcción y armado.

Los pasos por seguir son los siguientes:

1. Extender la malla y cortarla con dimensiones 4 m largo x 35 cm ancho (FIGURA 1)
2. Proceder a extender la malla a lo largo, y desde el borde extremo que se encuentra a su derecha medir 13 cm (del borde hacia adentro) con una regla y delimitarlo (mediante una línea punteada) con un plumón negro. (FIGURA 2)
3. De las líneas punteadas medir 7 cm (hacia adentro) y delimitarlo (de igual manera que el anterior) con un plumón negro. (FIGURA 3)
4. De la porción delimitada previamente (la de 7 cm) doblar la malla por la mitad hacia la mano izquierda haciendo encajar las líneas punteadas y coser la malla entre sí pasando por la línea punteada. Al terminar tendrá un ojal. (FIGURA 4)
5. Desde la costura que acaba de realizar mida 32 cm de malla hacia la mano izquierda y márquelola con plumón. (FIGURA 5)
6. Vuelva a medir (desde la marca previa) 7 cm hacia la izquierda y márquelo con plumón. (FIGURA 6)

7. De la porción delimitada previamente (la de 7 cm) doblarla por la mitad hacia la mano derecha haciendo encajar las líneas punteadas y coser la malla entre sí pasando por la línea punteada. Al terminar tendrá un ojal. (FIGURA 7)

8. Desde la costura que acaba de realizar mida 10 cm de malla hacia la mano izquierda y márquela con plumón. (FIGURA 8)

9. Repita el paso 6

10. Repita el paso 7

11. Repita el paso 5

12. Repita el paso 6

13. De la porción delimitada previamente (la de 7 cm) doblarla por la mitad hacia la mano izquierda dando un medio giro reverso, hacer encajar las líneas punteadas y coser la malla entre sí pasando por la línea punteada. (FIGURA 9)

14. Repita el paso 8

15. Repita el paso 6

16. Repita el paso 13

17. Repita el paso 5

18. Repita el paso 6

19. Repita el paso 7

20. Repita el paso 8

21. Repita el paso 6

22. Repita el paso 7

23. Repita el paso 5

24. Repita el paso 6

25. Repita el paso 7

26. Unir el excedente de malla al ojal que se formó en el paso 16. (FIGURA 10)

27. Coger el trozo de malla del paso 3 y coserlo al ojal que se encuentra sobre él (que se formó en el paso 13). (FIGURA 11)

28. Cortar un trozo de malla de 14 cm largo x 34 cm ancho y coserlo en el segundo nivel del filtro, en la pared lateral. (FIGURA 12)
29. Cortar un trozo de malla de 36 cm largo x 34 cm ancho y coserlo por todo el borde a la pared posterior del cuerpo, cerrando así la cara posterior del filtro. (FIGURA 13)
30. Insertar un cartucho de musgo en cada nivel del filtro. (FIGURA 14)
31. Cortar un trozo de malla de 36 cm largo x 34 cm ancho y coserlo por todo el borde a la pared anterior del cuerpo, cerrando así la cara anterior del filtro.
32. Finalmente, tiene su biofiltro armado.

Etapas F - Instalación del biofiltro en el reservorio

Con el biofiltro elaborado y el reservorio desinfectado adecuadamente puede colocar y tomar la fecha para contabilizar el tiempo de recambio de los cartuchos de musgo.

Etapas G - Operación, mantenimiento y seguimiento

El tiempo de vida de un biofiltro es de ocho semanas, pasado este tiempo se debe realizar un recambio en los cartuchos de musgo. Asimismo, cada mes se debe verificar el estado del biofiltro:

- Cerciorarse de que no haya acumulado sarro, piedras u algún tipo de suciedad en la malla.
- Verificar que la malla se encuentre sin ningún agujero. Esta debe estar en óptimas condiciones para poder filtrar el agua y no dejar escapar el musgo, por lo que si muestra algún orificio o rasgadura debe ser repuesta por una nueva.

NOTA:

Ahora que el agua está limpia y se puede tomar, debe manipularse y almacenarse de manera adecuada, para mantener su pureza. Si el agua no se almacena de manera segura, la calidad del agua tratada puede ser peor que el agua recibida inicialmente y puede causar enfermedades. Almacenar el agua de manera segura significa mantener el agua tratada alejada de fuentes de contaminación y utilizar un contenedor limpio y cubierto.
Extender la malla y cortarla con dimensiones 4 m largo x 35 cm ancho

Con la malla cortada proceder a extenderla a lo largo, y desde el borde extremo que se encuentra a su derecha medir 13 cm (del borde hacia adentro) con una regla y delimitarlo (mediante una línea punteada) con un plumón negro
De las líneas punteadas medir 7 cm (hacia adentro) y delimitarlo (de igual manera que el anterior) con un plumón negro.

De la porción delimitada previamente (la de 7 cm) doblar la malla por la mitad hacia la mano izquierda haciendo encajar las líneas punteadas, coser la malla entre sí pasando por la línea punteada. Al terminar tendrá un ojal.
Figura 5

Desde la costura que acaba de realizar mida 32 cm de malla hacia la mano izquierda y márquela con plumón

Figura 6

Vuelva a medir (desde la marca previa) 7 cm hacia la izquierda y márquelo con plumón
De la porción delimitada previamente (la de 7 cm) doblaría por la mitad hacia la mano derecha haciendo encajar las líneas punteadas y coser la malla entre sí pasando por la línea punteada. Al terminar tendrá un ojal.

Desde la costura que acaba de realizar mida 10 cm de malla hacia la mano izquierda y márguela con plumón.
Figura 9

De la porción delimitada previamente (la de 7 cm) doblarlía por la mitad hacia la mano izquierda dando un medio giro reverso, hacer encajar las líneas punteadas y coser la malla entre sí pasando por la línea punteada.
Unir el excedente de malla al ojal que se formó en el paso 16

Coger el trozo de malla del paso 3 y coserlo al ojal que se encuentra sobre él (que se formó en el paso 13)
Cortar un trozo de malla de 14 cm largo x 34 cm ancho y coserlo en el segundo nivel del filtro, en la pared lateral a.

Figura 13

Marrón → cara lateral a
Morado → cara lateral b
Celeste → cara posterior
Amarillo → cara anterior
Figura 14