

ANÁLISIS COMPARATIVO DE LA DISTRIBUCIÓN DE MUTACIONES EN GENES BLANCO ASOCIADO A LA RESISTENCIA A DROGAS ANTITUBERCULOSAS DE SEGUNDA LÍNEA

TESIS PARA OPTAR EL GRADO DE MAESTRO EN INFORMÁTICA BIOMÉDICA EN SALUD GLOBAL CON MENCIÓN EN BIOINFORMÁTICA

MARIA GERALDINE SOLIS QUISPE

LIMA-PERÚ

2022

ASESOR

Dr. Mirko Juan Zimic Peralta

JURADO DE TESIS

DR. JESUS LORENZO CHIRINOS CACERES

PRESIDENTE

MG. JUAN CARLOS AGAPITO PANTA

VOCAL

DR. DANIEL GUERRA GIRALDEZ

SECRETARIO

DEDICATORIA

A Dios y a mi familia por su apoyo y su compañía durante el desarrollo de la tesis.

AGRADECIMIENTOS

A mi asesor de tesis Dr. Mirko Zimic, por permitirme realizar una tesis en su laboratorio, así también por sus guías que permitieron enfocar la presente tesis. A mis compañeros de laboratorio de Bioinformática y Biología molecular de los Laboratorios de Investigación y Desarrollo (LID) por su tiempo y ayuda durante el desarrollo de la tesis.

A los profesores y al personal administrativo de la Unidad de Informática Biomédica en Salud Global de la Facultad de Salud Pública y Administración (FASPA) por permitirme realizar la maestría y por su acompañamiento en el desarrollo de la tesis para su finalización.

Al aporte del Fondo Nacional de Desarrollo Científico y Tecnológico del Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (FONDECYT-CONCYTEC) por permitir el desarrollo de la tesis a través de la beca de maestría.

Este trabajo utilizó los recursos computacionales, HPC-Linux-Clúster, del Laboratorio de Dinámica de Fluidos Geofísicos Computacionales del Instituto Geofísico del Perú (Subvenciones 101-2014-FONDECYT, SPIRALES2012 IRD-IGP, Manglares IGP-IDRC, PpR068).

FUENTES DE FINANCIAMIENTO

Esta investigación fue realizada con el financiamiento de Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica CONCYTEC, a través del Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica FONDECYT mediante la beca en el Programa de Maestría en Informática Biomédica en Salud Global.

ANÁLISIS COMPARATIVO DE LA DISTRIBUCIÓN DE MUTACIONES EN GENES BLANCO ASOCIADO A LA RESISTENCIA A DROGAS ANTITUBERCULOSAS DE SEGUNDA LÍNEA

INFORME DE ORIGINALIDAD ۷% % % TRABAJOS DEL INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES **ESTUDIANTE** FUENTES PRIMARIAS hdl.handle.net 1% Fuente de Internet FREDERICK R. CROSS. "'Marker Swap' <1% Plasmids: Convenient Tools for Budding Yeast Molecular Genetics", Yeast, 06/15/1997 Publicación www.revsaludpublica.sld.cu <1% 3 Fuente de Internet <1% idoc.pub Fuente de Internet <1% sedici.unlp.edu.ar Fuente de Internet <1% docs.bvsalud.org Fuente de Internet <1% repositorio.unal.edu.co Fuente de Internet

TABLA DE CONTENIDOS

RESUMEN

ABSTRACT

I. Int	troduce	ción	1		
I.1.	Anteco	edentes	1		
I.2.	Marco	teórico	4		
I.2	2.1 L	a resistencia en tuberculosis	4		
I.2	2.2 В	iología de <i>M. tuberculosis</i>	4		
I.2	2.3 E	pidemia de tuberculosis multidrogorresistente	5		
I.2	2.4 E	l uso y desarrollo de drogas antituberculosas	5		
I.2	2.5 T	ratamiento de tuberculosis	6		
I.2	2.6 N	lecanismo de acción de las drogas de segunda línea	8		
	I.2.6.1	. Mecanismo de acción de las fluoroquinolonas	8		
	I.2.6.2	. Mecanismos de acción de los inyectables de segunda línea	. 11		
	I.2.6.3	. Mecanismo de acción de la cicloserina	. 13		
	I.2.6.4	. Mecanismo de acción del ácido paraaminosalicílico	. 14		
I.2	2.7 E	l mecanismo de resistencia a drogas de segunda línea	. 15		
	I.2.7.1	. Mecanismo de resistencia a fluoroquinolonas	16		
	I.2.7.2	. Mecanismos de resistencia a capreomicina	. 17		
	I.2.7.3	. Mecanismos de resistencia a kanamicina	. 17		
	I.2.7.4	 Mecanismo de resistencia cruzada a kanamicina y capreomici 18 	na		
	I.2.7.5	. Mecanismo de resistencia a cicloserina	. 19		
	I.2.7.6	. Mecanismo de resistencia a ácido paraaminosalicílico	. 20		
I.2	2.8 N	létodos de diagnóstico de <i>M. tuberculosis</i> resistente a drogas de			
seg	gunda	línea	. 21		
I.2	2.9 L	a presión de selección farmacológica	. 22		
I.3. Planteamiento de la Investigación2					
I.4.	Justifi	cación	. 28		
II. Hi	pótesis	5	. 31		
III.	Objeti	vos	. 32		
IV.	Metod	ología	. 33		
IV.1.	. Dise	eño del estudio	. 33		
IV.2.	. Pob	lación y Muestra	. 33		
IV.3.	. Crit	erios de selección	. 34		

IV.4. Oper	racionalización de variables	35
IV.5. Instr	umentos	
IV.1. Proc	edimientos	
IV.1.1 M	anejo de base de datos secundarias y recopilación de mutaci	iones 38
IV.1.1.	1. Manejo de bases de datos secundarias de Perú	
IV.1.1.	2. Búsqueda de mutaciones en la base de datos pública PAT	ΓRIC
para el	resto del mundo	
IV.1.1.	3. Búsqueda de mutaciones en la literatura para Perú y el re	esto del
mundo	40	
IV.1.2 Id	entificación de mutaciones potenciales asociadas a resistenc	zia 43
IV.1.3 D	eterminación de la distribución de mutaciones en la secuenc	ia 43
IV.1.3.	1. Análisis estadístico para la comparación de las distribuci	ones de
mutaci	ones de Perú y del resto del mundo	44
IV.1.4 Id	entificación de regiones <i>hotspots</i> en la distribución de muta	ciones
en la secu	encia y estructura de la proteína codificada	45
IV 1.5 Ex	valuación de la presión de selección farmacológica de las dr	ogas de
segunda l	ínea	46 u
Jogundu I		
IV.2. Cons	sideraciones éticas	
IV.3. Limi	itaciones	
V. Resultado)S	49
V.1. Identifi	icación de mutaciones	49
V.1.1 M	utaciones del presente estudio	49
V.1.1.1	. Resistencia a ciprofloxacina	52
V.1.1.2	2. Resistencia a kanamicina	52
V.1.1.3	3. Resistencia a capreomicina	53
V.1.1.4	4. Resistencia cruzada a kanamicina y capreomicina	54
V.1.1.5	5. Resistencia a cicloserina	
V.1.1.6	5. Resistencia a ácido paraaminosalicílico	55
V.1.2 M	utaciones obtenidas a partir de la base de datos pública PAT	TRIC 55
V.1.3 M	utaciones reportadas en la literatura	56
V.2. Compa	aración de las distribuciones de mutaciones de Perú y del 1	resto del
mundo		58
V.2.1 Pr	oteína GyrA	58
V.3. Identifi	icación de regiones hotspots en la distribución de mutacior	nes en la
secuencia y	estructura de la proteína codificada	61
V.3.1 Pr	oteína GyrA	61
V.3.2 Pr	oteína GyrB	65
V.3.3 Pr	oteína GidB	69
V.3.4 Pr	oteína TlyA	

V.3.5	Proteína ThyA	77
V.4. Eva	luación de mutaciones de regiones hotspots cerca del sitio) de unión a la
droga o e	el sitio activo	80
V.4.1	Proteína GyrA	80
V.4.2	Proteína GyrB	81
V.4.3	Proteína GidB	
V.4.4	Proteína TlyA	
V.4.5	Proteína ThyA	86
VI. Dise	cusión	89
VII. Cor	nclusiones	107
VIII. Rec	comendaciones	109
IX. Ref	erencias bibliográficas	110
X. Anexo	DS	

LISTA DE FIGURAS

Figura 1. Mecanismo de acción de las fluoroquinolonas en M. tuberculosis (9) 10 Figura 2. Mecanismo de acción de los aminoglucósidos en M. tuberculosis (50). Figura 3. Mecanismo de acción de la cicloserina sobre la vía metabólica de la D-Figura 4. Mecanismo de acción del ácido paraaminosalicílico. A. La vía folato normal. **B.** PAS altera la vía folato (12).....14 Figura 6. Mecanismo de resistencia de los inyectables de segunda línea en M. Figura 7. Mecanismo de resistencia a PAS. A) Eflujo de drogas, B) Activación reducida de PAS, C) Sobreexpresión de DHFR y D) Inactivación de ThyA (54).21 Figura 8. Mutaciones obtenidas por la prueba GenoType MTBDRsl v2 (67)..... 22 Figura 9. Flujograma de la recopilación de mutaciones en cepas resistentes a 5 Figura 10. Flujograma de la metodología del presente estudio. *En GyrA, también Figura 11. Distribución de mutaciones en la secuencia de GyrA en cepas de M. tuberculosis resistentes a fluoroquinolonas. En la parte superior, se encontraron las mutaciones del presente estudio (+) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas para el resto del mundo. Se muestra los dominios de la estructura secundaria (hojas plegadas β y hélices alfa) en una disposición lineal, además, se indica el ORDR, sitios funcionales (barra negra) y regiones estructurales según Piton et al. (39). Los superíndices de las mutaciones indica la droga evaluada en la resistencia a ofloxacina (O), ciprofloxacina (C), moxifloxacina (M), levofloxacina (L) y gatifloxacina (G). Mutaciones obtenidas de la base de datos PATRIC (▲), mutaciones asociadas a resistencia (azul) y no asociada a resistencia (rojo) mediante mutagénesis (60,95,121,125,128,129), mutaciones en conjunto con una mutación de otra proteína (**¢**), mutaciones con alguno de los polimorfismos E21Q, G247S, S95T, Figura 12. Distribución de mutaciones fuera del QRDR en GyrA. A. Estructura terciaria de GyrA (color azul verde, PDB: 5BTC). B. Lateral izquierdo de GyrA. Las mutaciones (en forma de esfera, color según la región estructural al que pertenecen con base en la Figura 11) fueron señaladas. C. Centro de masa del sitio de unión a la droga (esfera roja) y centro de masa del sitio catalítico de unión al ADN (color fucsia). El sitio de unión a la droga y el sitio catalítico de unión al ADN (color verde limón) fueron indicados. D. Región QRDR (color limón) en GyrA y GyrB (color magenta, PDB: 6GAV). E. Región de los dos loops conservados (color Figura 13. Distribución de mutaciones en la secuencia y estructura de GyrB en cepas de M. tuberculosis resistentes a fluoroquinolonas de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de GyrB. Se indica el QRDR, los sitios funcionales en GyrB (barra negra) y las regiones estructurales según Piton et al. (39). En la parte superior, se encontraron las mutaciones del presente estudio (+) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas por el

resto del mundo. Los superíndices de las mutaciones indica la droga evaluada en la resistencia a ofloxacina (O), ciprofloxacina (C), moxifloxacina (M), levofloxacina (L) y gatifloxacina (G). Mutaciones obtenidas de la base de datos pública PATRIC (▲), mutaciones asociadas a resistencia (azul) y no asociadas resistencia (rojo) mediante mutagénesis (38,95,125–127), mutaciones en conjunto con una mutación de otra proteína (**c**) y mutaciones en cepas sensibles (verde). **B**. Distribución de mutaciones en la estructura terciaria de GyrB. B1. Estructura terciaria de GyrB (color magenta, PDB: 6GAV). B2. Reverso de GyrB. Las mutaciones (en forma de esfera, color de la región estructural al que pertenecen según la gráfica lineal en la Figura 13A) fueron señaladas. El QRDR y el loop conservado de GyrB (color Figura 14. Distribución de mutaciones en la secuencia y estructura de GidB en cepas de M. tuberculosis resistentes a kanamicina, capreomicina y a ambas drogas de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de GidB. Se indica los sitios de unión a SAM (barra negra) según Verma et al. (116). En la parte superior, se encontraron las mutaciones del presente estudio (\pm) ; y en la parte inferior, las mutaciones reportadas en el resto del mundo. Los superíndices de las mutaciones indican la droga evaluada en la resistencia a kanamicina (K), capreomicina (C) y ambas drogas (K-C). Mutaciones obtenidas de la base de datos pública PATRIC (▲), mutaciones asociadas a resistencia mediante mutagénesis (azul) (130), mutaciones en conjunto con una mutación de otra proteína (**C**), mutaciones con cambio de marco de lectura (fs) y mutaciones en cepas sensibles (verde). B. Centro de masa del sitio de unión a SAM (color rojo). El sitio de unión a SAM (color limón) fue indicado. C. Distribución de mutaciones en la estructura terciaria de GidB. C1. Estructura terciaria de GidB (color verde pálido, PDB: 7CFE). C2. Reverso de la estructura terciaria de GidB. Las mutaciones (en forma de esfera) en la resistencia a kanamicina (color rojo), capreomicina (color anaranjado) y kanamicinacapreomicina (color marrón) fueron señaladas......71 Figura 15. Distribución de mutaciones en la secuencia y estructura de TlyA en cepas de M. tuberculosis resistentes a kanamicina, capreomicina y a ambas drogas de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de TlyA. Se indica el sitio de unión a SAM y la tétrada catalítica (barra negra), así como las regiones estructurales según Witek et al. (49). En la parte superior, se encontraron las mutaciones del presente estudio (+) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas en el resto del mundo. Los superíndices de las mutaciones indica la droga evaluada en la resistencia a kanamicina (K), capreomicina (C) y ambas drogas (K-C). Mutaciones obtenidas de la base de datos pública PATRIC (**A**), mutaciones con cambio del marco de lectura (fs) y mutaciones en conjunto con una mutación de otra proteína (**C**). **B.** Centro de masa de la tétrada catalítica (color rojo) y centro de masa del sitio de unión a SAM (color fucsia). El sitio de unión a SAM y la tétrada catalítica (color limón) fueron indicados. C. Distribución de mutaciones en la estructura terciaria de TlyA. C1. Estructura terciaria de TlyA (color azul cielo, PDB: 5KYG). D. Reverso de la estructura de TlyA. Las mutaciones (en forma de esfera) en la resistencia a kanamicina (color rojo), capreomicina (color anaranjado) y a kanamicina-capreomicina (color marrón)

Figura 16. Distribución de mutaciones en la secuencia y estructura de ThyA en cepas de *M. tuberculosis* resistentes a PAS de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de ThyA. Se indica el sitio de unión al sustrato dUMP y cofactor MTHF (barra negra) según Pandey et al. (15). En la parte superior, se encontraron las mutaciones del presente estudio (+); y en la parte inferior, las mutaciones reportadas en el resto del mundo. Mutaciones obtenidas de la base de datos pública PATRIC (▲). B. Centro de masa del sitio de unión al sustrato dUMP (color fucsia) y cofactor MTHF (color rojo). Los sitios de unión sustrato dUMP y cofactor MTHF (color limón) fueron indicados. C. Distribución de mutaciones en la estructura terciaria de ThyA. C1. Estructura terciaria de ThyA (color azul claro, PDB: 3QJ7). C2. Reverso de la estructura de ThyA. Las mutaciones (en forma de esfera) procedentes de Perú (color Figura 17. Distancia mínima de las mutaciones en GyrA. Se muestra las distancias de las mutaciones de las regiones hotspots encontrados en GyrA y de una mutación Figura 18. Distancia mínima de las mutaciones en GyrB. Se muestra las distancias de las mutaciones de las regiones hotspots encontrados en GyrB y de las mutaciones Figura 19. Distancia mínima de las mutaciones en GidB. Se muestra las distancias de las mutaciones de las regiones hotspots encontrados en GidB y de las mutaciones Figura 20. Distancia mínima de las mutaciones en GidB. Se muestra las distancias de las mutaciones de las regiones hotspots encontrados en GidB y de las mutaciones Figura 21. Distancia mínima de las mutaciones en TlyA. Se muestra las distancias de las mutaciones de la región hotspot encontrado en TlyA y de las mutaciones Figura 22. Distancia mínima de las mutaciones en TlyA. Se muestra las distancias de las mutaciones de la región hotspot encontrado en TlyA y de las mutaciones Figura 23. Distancia mínima de las mutaciones en ThyA. Se muestra las distancias de las mutaciones de las regiones hotspots encontrados en ThyA y de las mutaciones fuera de las regiones hotspots. La línea roja indica el umbral de 12 Å...... 87

LISTA DE TABLAS

Tabla 1. Clasificación de las drogas de segunda línea evaluadas en el presente
Tabla 2. Matriz de operacionalización de las variables de estudio.
 35

Tabla 4. Resultado de las bases de datos secundarias de Perú.
 50

 Tabla 5. Mutaciones únicas exclusivamente en cepas resistentes o presentes en una mayor proporción de cepas resistentes a ciprofloxacina, kanamicina, capreomicina, kanamicina-capreomicina y ácido paraaminosalicílico en GyrA, rrs, GidB, TlyA, Rv3728 y ThyA. Se muestra el número total de cepas resistentes/sensibles para el presente estudio, así como el número de cepas que presentaron al menos la mutación **Tabla 6.** Resultado de la identificación de mutaciones a partir de las bases de datos secundarias y la búsqueda externa de mutaciones para Perú y el resto del mundo. Cada cantidad de mutaciones no considera las repeticiones entre columnas...... 59 Tabla 7. Comparación de las distribuciones de mutaciones únicas en cepas resistentes al menos a ciprofloxacina en Perú y del resto del mundo. 60 Tabla 8. Comparación de las distribuciones de mutaciones únicas en cepas Tabla 9. Resultados de las regiones hotspots encontrados en GyrA, GyrB, GidB, TlyA y ThyA y su asociación a la presión de selección farmacológica para cada

LISTA DE ABREVIATURAS

- QBP : Sitio de unión a la droga
- QRDR : Región determinante de la resistencia a fluoroquinolonas
- SAM : S-adenosil-L-metionina
- MTHF: 5,10-metilentetrahidrofolato
- dUMP : 2'-desoxiuridina-5'-monofosfato
- PAS : Ácido paraaminosalicílico
- GyrA : Subunidad A de la ADN girasa
- GyrB : Subunidad B de la ADN girasa
- GidB : Metiltransferasa del ARNr 16S
- TlyA : 2'-O-metiltransferasa del ARNr 16S y 23S
- ThyA : Timidilato sintasa
- Alr : Alanina racemasa
- gyrA : gen que codifica la subunidad A de la ADN girasa
- gyrB : gen que codifica la subunidad B de la ADN girasa
- gidB : gen que codifica la metiltransferasa del ARNr 16S
- *tlyA* : gen que codifica la 2'-O-metiltransferasa del ARNr 16S y 23S
- *alr* : gen que codifica la alanina racemasa
- *thyA* : gen que codifica la timidilato sintasa
- *rrs* : gen que codifica la ARNr 16S

RESUMEN

La resistencia a drogas de segunda línea en Mycobacterium tuberculosis es causada por mutaciones en proteínas que participan en el mecanismo de acción y resistencia a dichas drogas. Este grupo involucra a los inyectables de segunda línea y las fluoroquinolonas principalmente. A fin de conocer si la distribución de mutaciones asociadas a resistencia a drogas de segunda línea en Perú sigue un patrón similar a aquella reportada a nivel global, se comparó la distribución de mutaciones asociadas a resistencia encontradas en Perú con aquella reportada en el resto del mundo. Se utilizó bases de datos especializadas para recopilar mutaciones de aislados clínicos resistentes a drogas de segunda línea. Se compararon las distribuciones de mutaciones únicas de Perú y del resto del mundo mediante la prueba de signed-rank y se identificaron las regiones hotspots en la secuencia y estructura tridimensional. Nuestros resultados revelan que, las distribuciones de mutaciones únicas en GyrA, en cepas resistentes a fluoroquinolonas, fueron similares entre Perú y el resto del mundo y se agruparon en una región hotspot principal que se localiza en el sitio activo y, en menor grado, en otras regiones potencialmente funcionales. Se sugiere que la presión de selección farmacológica de las fluoroquinolonas genera un patrón conservado de mutaciones de GyrA, a nivel global, responsable de la resistencia. Asimismo, una posible presión de selección farmacológica fue encontrada en TlyA y ThyA. Estos hallazgos podrían contribuir con el diagnóstico de resistencia a fármacos de segunda línea en M. tuberculosis, así como para el desarrollo de nuevas drogas antituberculosas.

Palabras Claves: Tuberculosis, resistencia a drogas de segunda línea, mutaciones, presión de selección farmacológica.

ABSTRACT

Resistance to second-line drugs in Mycobacterium tuberculosis is caused by mutations in resistance-associated proteins that participate in the mechanism of action and resistance to these drugs, mainly involving second-line injectables and fluoroquinolones. In order to find out if the distribution of mutations in resistance to second-line drugs in Peru follows a pattern similar to that reported globally, the distribution of resistance-associated mutations found in Perú was compared with that reported in the rest of the world. Specialized databases were used to collect mutations of clinical isolates resistant to second-line drugs. Distribution of unique mutations from Peru and the rest of the world were compared using the signed-rank test and hotspots regions were identified in the sequence and structure of the encoded protein. Our results reveal that the distributions unique mutations in GyrA in fluoroquinolone-resistant strains were similar between Peru and the rest of the world and clustered in a main hotspot region located at the active site and, to a lesser extent, in other functional regions. It is suggested that the pharmacological selection pressure of fluoroquinolones has generated a conserved pattern of GyrA mutations, at a global level, responsible for resistance. In addition, a possible pharmacological selection pressure was found in TlyA and ThyA. These findings could contribute to the diagnosis of resistance to second-line drugs in *M. tuberculosis*, as well as to the development of new anti-tuberculosis drugs.

Keywords: Tuberculosis, resistance to second-line drugs, mutations, pharmacological selection pressure.

I. Introducción

I.1. Antecedentes

La tuberculosis (TB) es una enfermedad infecciosa causada por *Mycobacterium tuberculosis* (1). Se encuentra entre las 10 principales causas de mortalidad en el mundo con 1.2 millones de muertes en el 2018 a nivel global y 7 millones de nuevos casos notificados (2). Ante esta situación, la OMS ha propuesto acelerar la disminución de la incidencia anual; sin embargo, la tuberculosis sigue siendo un problema de países de ingresos bajos y medianos (3).

La resistencia a drogas es un problema relacionado con la administración inadecuada de esquemas de tratamiento y retrasos en el diagnóstico de resistencia (4). En un estudio sobre vigilancia de resistencia en Perú, se reportó que el 8.3% de casos de tuberculosis fueron multidrogorresistente (MDR), donde los casos resistentes al menos a una droga de segunda línea fueron 36.1% y los casos de tuberculosis extremadamente resistente (TB XDR) fueron 5.9%, donde el 90% de casos se concentró en la capital de Lima (1).

Entre las drogas de primera línea, para el tratamiento de tuberculosis, se tiene a rifampicina, isoniacida, pirazinamida y etambutol, donde la resistencia a rifampicina e isoniacida es denominada TB MDR, que conduce a la necesidad del uso de drogas de segunda línea (5). Estas drogas de segunda línea son principalmente las fluoroquinolonas y los inyectables de segunda línea, que constituyen el grupo A y B de los fármacos en el tratamiento de TB MDR, así también como la cicloserina, que forma parte del grupo C; sin embargo, cuando no se puede brindar alguno de estos medicamentos, se utiliza otras drogas como el

ácido paraaminosalicílico para completar el esquema (6). A pesar de que las drogas de segunda línea son menos efectivas, más toxicas y costosas, forman parte del nuevo esquema de tratamiento de larga duración de TB MDR (7). No obstante, el desarrollo de la resistencia a este tipo de drogas conlleva a la aparición de tuberculosis extremadamente resistente (TB XDR) complicando aún más el tratamiento (8).

El mecanismo de acción de las fluoroquinolonas se ejerce sobre la ADN girasa para inhibir el superenrollamiento de ADN (9), mientras que los inyectables de segunda línea inhiben la síntesis de proteínas dirigiéndose a diferentes blancos, puesto que la kanamicina se dirige al nucleótido metilado de la ARNr 16S y la capreomicina se dirige a los nucleótidos metilados del ARNr 16S y ARNr 23S (10). Asimismo, la cicloserina inhibe la alanina racemasa y alanina ligasa para así bloquear la síntesis de peptidoglucano (11), mientras que el ácido paraaminosalicílico es un profármaco que, en su forma activa, inhibe la dihidrofolato reductasa (DHFR) en la vía folato (12).

El principal mecanismo de resistencia a fluoroquinolonas está asociado por mutaciones en la región determinante de resistencia en los genes *gyrA* y *gyrB*, los cuales codifican las subunidades de la ADN girasa, mientras que la resistencia a inyectables de segunda línea está asociada a mutaciones en el gen *rrs*, que codifica el ARNr 16S (13). También, en la resistencia a inyectables de segunda línea, se describió mutaciones en los genes *tlyA*, que codifica una metiltransferasa del ARNr 16S y ARNr 23S, y *gidB*, que codifica una metiltransferasa del ARNr 16S (10,14). La resistencia a ácido paraaminosalicílico está asociada a mutaciones en el gen *thyA*, que codifica la timidilato sintasa (15). Asimismo, el mecanismo de resistencia a cicloserina no está definido debido a los múltiples genes blanco propuestos (16).

El uso inadecuado en el tratamiento prolongado de tuberculosis genera una presión de selección farmacológica que promueve la selección de mutaciones y nuevas cepas resistentes altamente adaptativas (17). Esto aumenta la prevalencia y la dispersión de las cepas resistentes a fármacos (18). En Perú, se reportó cepas resistentes a 5 drogas de segunda línea: ciprofloxacina, kanamicina, capreomicina, etionamida y ácido paraaminosalicílico en el 2008 (1). Sin embargo, actualmente hay un reporte de cepas resistentes también a levofloxacina, la nueva fluoroquinolona incorporada en el tratamiento de TB MDR, lo que indica que el bacilo es capaz de volverse resistentes a nuevas drogas (4). La distribución de mutaciones revela el patrón de mutaciones que dirige la resistencia a drogas, la cual se caracteriza por presentar regiones *hotspots* (19,20). A medida que la presión de selección farmacológica se mantiene, las mutaciones tienden a acumularse en regiones *hotspots* asociadas a sitios activos o sitios catalíticos, que pueden ayudar a comprender el rol de las mutaciones en la resistencia (19–21).

Por todo ello, el presente estudio tiene como objetivo determinar y comparar las distribuciones de mutaciones asociadas a resistencia a drogas de segunda línea en cepas de *M. tuberculosis* de Perú y del resto del mundo para conocer si existe un patrón conservado de mutaciones. Esto revelaría que la presión de selección farmacológica es uniforme a nivel global y, además, daría indicios de nuevos mecanismos de resistencia mediante la identificación de regiones *hotspots* cerca de los sitios de activos en la distribución de mutaciones.

I.2. Marco teórico

I.2.1 La resistencia en tuberculosis

La tuberculosis es una enfermedad causada por *M. tuberculosis* (22). La tuberculosis se presenta de dos formas: enfermedad activa o infección latente (22). En la infección latente, *M. tuberculosis* se localiza en las células epiteliales del pulmón, fibroblastos y en células no asociadas necesariamente con la lesión primaria, mientras que, en la enfermedad activa, se encontró en los macrófagos para su replicación (22,23). La TB MDR es causada por *M. tuberculosis* resistente al menos a isoniacida y rifampicina, las dos drogas más potentes contra la TB (24). La TB XDR es la tuberculosis resistente a las drogas isoniacida, rifampicina, una fluoroquinolona y un inyectable de segunda línea (1).

I.2.2 Biología de *M. tuberculosis*

M. tuberculosis es una bacteria de lento crecimiento con un tiempo de duplicación de 12 a 24 horas bajo condiciones óptimas (23). Se caracteriza por presentar una excepcional estructura de la pared celular, que conforma una fuerte barrera impermeable a drogas y compuestos nocivos y tiene un rol en la virulencia (23). Esta estructura está compuesta de una bicapa de lípidos, peptidoglucano, ácidos micólicos, arabinogalactano y lipoarabinomanano (23). Además, el colesterol, en lugar del glicerol, es la fuente de carbono de la bacteria para su adaptación (25).

Cuando la respuesta inmune mediada por células controla la replicación bacteriana en un 90-95%, la TB se encuentra en estado de latencia (23). Sin embargo, si esta respuesta inmune se debilita, el equilibrio entre los bacilos y la respuesta inmunitaria se rompe, favoreciendo la activación de la replicación de *M*. *tuberculosis* y la TB activa (23).

I.2.3 Epidemia de tuberculosis multidrogorresistente

Los casos notificados para TB XDR fueron de 202 casos y los casos notificados para TB MDR, 35,000-50,000 casos en el 2008 (26). En el 2009, con base en un análisis del número de casos notificados, se declaró la epidemia de TB MDR/XDR en Perú, siendo la única epidemia en Latinoamérica y muy similar a los países de África (27). Lima y el Callao son las regiones de Perú con el 80 y 92% de TB MDR y TB XDR respectivamente (27). La gravedad de esta epidemia de TB MDR/XDR se refleja en la aparición de casos primarios de TB XDR en niños (27). Ante esta situación, la "Estrategia Sanitaria Nacional de Prevención y Control de la Tuberculosis (ESN-PNCT)" del MINSA estima cada año la tasa de incidencia, con el fin de declarar al Perú libre de TB, cuando alcancé una tasa de incidencia menor o igual a 10 casos de TB por cada 100 mil habitantes, en el marco para el cumplimiento de la ley 30287 y de la estrategia "Fin de la tuberculosis" de la OMS (27). Asimismo, se ha promovido el acceso universal a las pruebas de sensibilidad y acceso temprano al tratamiento de TB MDR, sin embargo, los casos anuales siguen aumentando de forma sostenida (24). Con base en ello, se sugirió factores de riesgo en la resistencia: 1) Factores asociados a la selección de resistencia en la comunidad y 2) condiciones de vulnerabilidad a la resistencia (28).

I.2.4 El uso y desarrollo de drogas antituberculosas

Las drogas antituberculosas más efectivas son isoniacida y rifampicina, que son inhibidores de la síntesis de la pared celular y la transcripción de ARN,

respectivamente (8). Cuando la bacteria detecta un ambiente hostil en los macrófagos, debido a la baja cantidad de oxígeno o falta de nutrientes, responde mediante la activación de su estado latente y en esta forma se vuelve resistente a isoniacida y sensible a otras drogas como pirazinamida, rifampicina y metronidazol; a pesar de ello, *M. tuberculosis* puede persistir en los tejidos del hospedero bajo diferentes estados metabólicos (23).

Un obstáculo en el desarrollo de nuevas drogas para TB latente es la falta de una prueba para evaluar si la bacteria está muerta y el limitado entendimiento del mecanismo de acción de las drogas bactericidas existentes y su impacto sobre el metabolismo, que no permiten el desarrollo de nuevas drogas (29). Además, un desafío reciente es la heterogeneidad fenotípica, es decir, la diversidad de bacilos a nivel de una sola célula en un mismo microambiente (29). Se espera que las subpoblaciones tengan tasas de crecimiento diferentes o una expresión de una enzima específica; sin embargo, con la nueva tecnología llamada "análisis de una célula (*single cell*)", se busca identificar la población responsable del comportamiento celular promedio para un mejor manejo del problema y la priorización de iniciativas de investigación (29).

I.2.5 Tratamiento de tuberculosis

Entre los esquemas de tratamiento para tuberculosis basado en los fármacos isoniacida, rifampicina, pirazinamida, etambutol y estreptomicina, se puede diferenciar el esquema I, el esquema II y el esquema II reforzado (24,30). Entre los esquemas de tratamiento para TB resistente, el esquema estandarizado (empírico) de 18 meses involucra los fármacos etambutol, pirazinamida, levofloxacina, kanamicina, etionamida y cicloserina, así como otras drogas de segunda línea

recomendadas para este tratamiento; mientras que el esquema individualizado necesita de los resultados de la prueba de sensibilidad a drogas de segunda línea, la cual da a conocer el perfil de resistencia (31). También se está aplicando gradualmente el régimen acortado (5), sin embargo, no se ha evaluado su efectividad y sus consecuencias en el desarrollo de la resistencia en la población (32). La OMS recomendó un enfoque único para desarrollar un régimen libre de inyecciones para cualquier paciente con TB activa, cuando haya acceso a la prueba de sensibilidad, nuevos regímenes y ningún desarrollo de la resistencia a nivel significativo (32). Por otro lado, en TB MDR resistente a fluoroquinolonas, se planteó el uso de drogas conocidas (clofazimina y linezolida) y nuevas drogas (bedaquilina, delamanid y pretomanid) (32).

Para el éxito del tratamiento de TB MDR, la OMS reagrupó los medicamentos en seis grupos principales (A, B, C, D1, D2 y D3) y propuso un régimen de tratamientos de TB MDR individualizados largo con al menos cinco drogas en la fase intensiva: una fluoroquinolona de última generación, un inyectable de segunda línea. dos drogas С (etionamida/protionamida, una 0 del grupo cicloserina/terizidona, linezolida y clofazimina), drogas del grupo D1 (pirazinamida y otro droga de primera línea), drogas del grupo D2 (bedaquilina y delamanid) y drogas del grupo D3 (ácido paraaminosalicílico, carbapenem con amoxicilina-clavulanato y tiocetazona) (32). A pesar de la efectividad de estos tratamientos largos individualizados, la presencia de la resistencia a fluoroquinolonas o la existencia TB XDR disminuye la efectividad del tratamiento, además, la implementación a gran escala de tratamientos excesivamente largos (20 meses) es difícil en un área de alta carga de la enfermedad con recursos limitados

(32). El manejo de pacientes TB MDR es complicado cuando no se tiene los recursos necesarios como una atención de salud limitada y una pobre infraestructura, añadiendo las condiciones sociales del contexto (áreas severamente afectadas y la pobreza) (32).

I.2.6 Mecanismo de acción de las drogas de segunda línea

Las drogas de segunda línea están representadas principalmente por los inyectables

de segunda línea y las fluoroquinolonas (Tabla 1).

Tabla 1. Clasificación de las drogas de segunda línea evaluadas en el presente estudio según el grupo al que pertenecen (33).

Grupo	Drogas de segunda línea
A. Fluoroquinolonas	Ciprofloxacina (CPX)
	Levofloxacina (LVX)
	Ofloxacina (OFX)
	Gatifloxacina (GFX)
	Moxifloxacina (MFX)
B. Inyectables de segunda línea	Kanamicina (KM) (aminoglucósido)
	Capreomicina (CM) (péptido cíclico)
C. Otra droga de segunda línea incluida en el tratamiento de TB MDR	Cicloserina (CS)
D. Droga de segunda línea	Ácido paraaminosalicílico (PAS)
complementaria	

I.2.6.1. Mecanismo de acción de las fluoroquinolonas

Las fluoroquinolonas son fármacos esenciales con actividad bactericida y esterilizante y con escasa toxicidad en tuberculosis (34). En general, estas drogas son antibióticos de amplio espectro contra bacilos Gram negativos y Gram positivos en infecciones urinarias y respiratorias (35). Estos fármacos son los antibióticos más utilizados en la clínica (36) y se dividen por generaciones: la ciprofloxacina y la ofloxacina son de segunda generación, levofloxacina es de tercera generación y

la moxifloxacina y la gatifloxacina son de cuarta generación (37), siendo la moxifloxacina y la gatifloxacina las fluoroquinolonas más efectivas (38).

La proteína blanco de las fluoroquinolonas es la ADN girasa, cuya función es la replicación de ADN (39). La ADN girasa es un tetrámero formado por las subunidades A (GyrA) y B (GyrB). GyrA presenta las regiones N-terminal y C-terminal, mientras GyrB se caracteriza por las regiones ATPasa y Tropima (39). La cadena N-terminal de GyrA (residuos 1-502) y la región tropima de GyrB (residuos 448-654) forman el centro catalítico de la ADN girasa (39). El sitio de unión a la droga (QBP) está formado por los residuos 84-91 de GyrA, los residuos 459-462, 480-486 y 498-502 de GyrB y 2 nucleótidos del ADN. Además, se reportó sitios funcionales adicionales en la ADN girasa: La subunidad GyrA presenta un sitio catalítico de unión al ADN en los residuos R128-Y129; GyrB tiene un sitio de unión al magnesio en los residuos E459, D532 y D534 (39); además, el complejo GyrA y GyrB presenta una región de dos *loops* conservados en los residuos 211-214 en GyrA y 214-245 en GyrB, que conecta el centro catalítico con la ATPasa de GyrB (40).

Existen varios cristales disponibles en el RCSB PDB (https://www.rcsb.org/) para la ADN girasa de *M. tuberculosis*. El cristal 5BTC (39) representa al centro catalítico unido a la ciprofloxacina. Se destaca la región estructural llamada Torre (residuos 170–355 y 491–501) (39), cuya función es el pasaje del ADN (41). Además, los cristales 6GAV y 6GAU (40) son modelos del complejo GyrA y GyrB. En el cristal 6GAV, se encuentra la región de dos *loops* conservados de GyrA y GyrB, cuya función es mantener la actividad ATPasa reducida (40). En la replicación, la función de la ADN girasa es escindir el ADN de doble cadena y resellar (9). El centro catalítico de la ADN girasa se une al ADN de doble de cadena a partir de un enlace con el residuo Y129, siendo llamado complejo de escisión o complejo ADN girasa/ADN (39). Luego, se da la dimerización de la ATPasa tras la unión al ATP, así el centro catalítico captura al ADN de doble cadena para el transporte del ADN escindido a través de la proteína. Luego, el ADN es resellado y liberado (39) (Figura 1).

Las fluoroquinolonas inhiben el resellado de las rupturas de doble cadena, después del pasaje del ADN (38). Estas drogas se unen específicamente a los complejos ADN girasa/ADN para inhibir el superenrollamiento del ADN (42) (Figura 1). Como resultado, las fluoroquinolonas aumentan la concentración de los complejos ADN girasa/ADN y actúan como bloqueos físicos evitando el resellado del ADN (42). Si bien todas las fluoroquinolonas tienen la misma proteína blanco, se demostró que la estabilidad del complejo de ADN girasa/ADN está asociada a la efectividad de la fluoroquinolona utilizada (38).

Figura 1. Mecanismo de acción de las fluoroquinolonas en M. tuberculosis (9)

I.2.6.2. Mecanismos de acción de los inyectables de segunda línea

En este grupo de antibióticos, se encuentran los aminoglucósidos, sea kanamicina o amikacina, y la capreomicina (33). Son fármacos esenciales por su actividad bactericida y son más tóxicos que las fluoroquinolonas (34). Entre estas drogas, la capreomicina también tiene un efecto bactericida en los bacilos no replicantes de *M. tuberculosis* (43).

La molécula blanco de estas drogas es el ARN ribosomal (ARNr), que participa en la síntesis de proteína (Figura 2). Esta molécula puede ser el ARNr 16S, codificado por el gen *rrs* y forma parte de la subunidad ribosomal pequeña 30S, o el ARNr 23S, codificado por el gen *rrl* y forma parte de la subunidad ribosomal grande 50S (8,10). Una característica del ARNr 16S es la hélice 44 en el sitio P del centro decodificante del ribosoma, donde se desarrolla la traducción (44).

Los inyectables de segunda línea inhiben la síntesis de proteínas (10). La kanamicina se une a la hélice 44 del ARNr 16S y bloquea la síntesis de proteínas (44). Por otro lado, la capreomicina se une al ARNr 16S y al ARNr 23S (44) en la interfaz de las subunidades 30S y 50S e inhibe la translocación del ARN mensajero (ARNm) y ARN de transferencia (ARNt) durante la traducción (45). Por otro lado, la metilación de nucleótidos específicos es necesaria para la unión de la kanamicina y capreomicina al ARNr, la cual es llevada por metiltransferasas del ARNr (44,45). La proteína GidB, llamado también RsmG, es una metiltransferasa del ARNr 16S, cuya función es la metilación del nucleótido G518 (46) o G527 (44) del ARNr 16S. Se reportó que la metilación del nucleótido G518 permitió una traducción eficiente (46). No se conoce como actúa GidB en el mecanismo de acción de la kanamicina.

La proteína TlyA es una 2'-O-metiltransferasa del ARNr 16S y 23S, dependiente de S-adenosil-L-metionina (SAM), cuya función es la metilación del nucleótido C1920 de la hélice 69 en el ARNr 23S y del nucleótido C1409 de la hélice 44 en el ARNr 16S (10,45). La tétrada catalítica es responsable de la actividad enzimática de TlyA (47), siendo su función la metilación del ARNr 23S como parte de las modificaciones tardías en la maduración de los ribosomas para la estabilización de la subunidad ribosomal 50S (48). También la proteína TlyA presenta el motivo RXWV (residuos 60-63), el cual es un conector (*linker*) entre la N-terminal y C-terminal, cuya función es la unión a dos ribosomas, mientras la secuencia atípica (GASTG) (residuos 90-94), en el C-terminal, es un sitio de unión a SAM (49).

Entre los cristales reportados en el RCSB PDB (https://www.rcsb.org/), el cristal 7CFE es un modelo de GidB, mientras el cristal 5KYG y 5KS2 son modelos de TlyA. El cristal 5KYG, que presenta el motivo RAWV como una región sin estructura (*loop*), posee una mejor resolución que el cristal 5KS2, que presenta el motivo RAWV como un α hélice (49).

Figura 2. Mecanismo de acción de los aminoglucósidos en M. tuberculosis (50).

I.2.6.3. Mecanismo de acción de la cicloserina

La cicloserina es un fármaco análogo a la D-alanina y tiene un amplio espectro de actividad contra las bacterias Gram negativos y Gram positivos (16).

Las blancos moleculares de la cicloserina son la D-alanina racemasa (Alr), codificada por el gen *alr*, y D-alanina-D-alanina ligasa (Ddl), codificada por el gen *ddlA*, siendo ambas necesarias para la síntesis de peptidoglucano vía la síntesis de alanina (51). La enzima Ddl cataliza la unión de dos moléculas de D-alanina generando un dipéptido precursor del peptidoglucano (11). La enzima Alr es una enzima piridoxal 5'-fosfato (PLP) dependiente, cuya función es la conversión de la L-alanina a D-alanina (52).

La cicloserina inhibe la síntesis de peptidoglucano tras la unión a los blancos moleculares, Ddl y Alr, donde el principal mecanismo de acción es la inhibición de Ddl para la muerte de la bacteria (51). La cicloserina es estructuralmente análoga a la D-alanina, el cual es sustrato de los blancos moleculares Ddl y Alr (16). En Ddl, la cicloserina se une al C-terminal del sitio de unión a D-alanina (11), mientras, en Alr, la cicloserina forma un aducto con el cofactor PLP en el sitio activo del Alr (52) (Figura 3).

Figura 3. Mecanismo de acción de la cicloserina sobre la vía metabólica de la D-alanina (53).

I.2.6.4. Mecanismo de acción del ácido paraaminosalicílico

PAS es un profármaco que necesita de la acción enzimática de la dihidropteroato sintasa (DHPS) y de la enzima dihidrofolato sintasa (DHFS) para la obtención de los compuestos activos, hidroxidihidropteroato (H₂PtePAS) e hidroxidihidrofolato (H2PtePAS-Glu), respectivamente. La enzima DHPS es codificada por el gen *folP1*, mientras la enzima DHFS es codificada por el gen *folP1*, mientras la enzima DHFS es codificada por el gen *folC*. PAS es un análogo estructural del ácido paraaminobenzoico (PABA), sustrato de la DHPS, sin embargo, recientemente se reportó que PAS no es un inhibidor de la DHPS (12). La proteína blanco de la forma activa de PAS (H2PtePAS-Glu) es la enzima dihidrofolato reductasa (DHFR), codificada por el gen *dfrA*, de esta manera, la

a partir de la enzima DHFR (12). El mecanismo de acción de PAS es considerado como un "envenenamiento de la vía folato" (12) (Figura 4).

droga PAS inhibe la síntesis de tetrahidrofolato y el crecimiento de M. tuberculosis

Figura 4. Mecanismo de acción del ácido paraaminosalicílico. A. La vía folato normal. B. PAS

altera la vía folato (12).

Por otro lado, la proteína ThyA es importante dentro del mecanismo de acción de PAS, porque es una enzima requerida para la formación de dihidrofolato (H2PteGlu), sustrato de la enzima DHFR. En consecuencia, ThyA aumenta la demanda de la enzima DHFR.

La enzima ThyA, codificada por el gen *thyA*, presenta un sitio de unión al sustrato dUMP en el residuo 127 y un sitio de unión al cofactor MTHF en los residuos 143-172 (15). Su función es la conversión de dUMP a dTMP en la síntesis de ADN mediante una reacción de metilación dependiente de 5,10-metilentetrahidrofolato (MTHF) (derivado del tetrahidrofolato) (54). En un estudio sobre el mecanismo de acción de PAS sobre ThyA, se demostró que PAS inhibió la síntesis de dTMP indirectamente, conduciendo a la muerte de la bacteria por falta de timina (54).

I.2.7 El mecanismo de resistencia a drogas de segunda línea

El mecanismo de resistencia en *M. tuberculosis* consiste en la presencia de mutaciones en genes blanco ubicados en el cromosoma del bacilo, a diferencia de otras bacterias con mutaciones adicionales asociadas a resistencia, localizadas en genes de plásmido (8). Las mutaciones en genes de resistencia a drogas de segunda línea son principalmente polimorfismos de un solo nucleótido (SNP), sin embargo, también se reportaron inserciones y deleciones (55) (Figura 5).

Figura 5. Mecanismo de resistencia en *M. tuberculosis* (8).

I.2.7.1. Mecanismo de resistencia a fluoroquinolonas

El principal mecanismo de resistencia son mutaciones en la proteína blanco ADN girasa, principalmente en una región conservada llamada "región determinante de la resistencia a quinolona (QRDR)" en GyrA y en GyrB (56,57). El QRDR de GyrA abarca los residuos 74-113 (39), mientras el QRDR de GyrB abarca los residuos 461-501 (58). Se estima que, aproximadamente, 60-90% de los aislados clínicos de *M. tuberculosis* resistentes a fluoroquinolonas (FQ) tienen mutaciones en el QRDR de GyrA, particularmente en los codones 88, 90, 91 y 94 (59). Las sustituciones de aminoácidos más conocidas se encontraron en los codones 88, 90, 94 en la región de GyrA según estudios epidemiológicos, las cuales cambian el bolsillo de unión a las fluoroquinolonas (60). Además, el 15-18% de las cepas de *M. tuberculosis* resistentes a fluoroquinolonas on presentan mutaciones (59). Las excepciones son los polimorfismos de GyrA en los codones 21, 95 y 668, que no parecen estar relacionados a resistencia (59). Las mutaciones en GyrB asociadas a resistencia a fluoroquinolonas ocurren principalmente con mayor frecuencia en los codones 461 y 501 (58).

I.2.7.2. Mecanismos de resistencia a capreomicina

La resistencia a capreomicina está asociada a mutaciones en el gen blanco *rrs* y en la proteína TlyA, siendo el gen *rrs* más sensible clínicamente (45). El mecanismo de resistencia en capreomicina TlyA no está bien definido (45). No se conoce bien el rol de las mutaciones en TlyA en la resistencia a capreomicina, el rol de TlyA en la sensibilidad a capreomicina ni su relación con las mutaciones en el gen *rrs* (45). Se encontró que el mecanismo de resistencia de una deleción de un nucleótido del codón 119, donde esta última vía fue más compleja, más resistente y más tolerante a capreomicina (45). Asimismo, en cepas resistentes a capreomicina, se descubrió que una tasa de mutación de, aproximadamente, el 95% en TlyA, que incluyó un 20% de cepas con mutaciones puntuales y 5% de cepas con la mutación puntual A1401G en el gen *rrs* (45).

I.2.7.3. Mecanismos de resistencia a kanamicina

En otras bacterias, los mecanismos de resistencia a kanamicina incluyen el flujo de entrada alterado, afluencia del fármaco, inactivación del fármaco por modificación enzimática, metilación del ARNr y mutaciones en el ARNr, que interrumpen la unión del fármaco al ribosoma (61) (Figura 6). Por el contrario, nuestra comprensión del mecanismo de resistencia a kanamicina en *M. tuberculosis* es limitada (61). La mutación A1401G del gen *rrs* es la mutación más frecuente y se encuentra en el 56% de cepas de *M. tuberculosis* resistentes a kanamicina (14). El 80% de los aislados clínicos con baja resistencia a kanamicina y sin mutaciones en el gen *rrs* presentan mutaciones en el gen *eis* ("enhanced intracellular survival")

(61), el cual codifica una enzima que inactiva aminoglucósidos mediante múltiples acetilaciones (62). Las mutaciones G1484T, C1402T y G1158T también fueron encontradas en cepas resistentes a kanamicina, pero en baja frecuencia, añadiendo que también pueden estar en cepas sensibles para kanamicina (14).

Por otro lado, a pesar de que el mecanismo el mecanismo de resistencia a kanamicina en *M. tuberculosis* mediado por GidB (RmsG) no está determinado, se propuso a *gidB* como posible candidato en la resistencia a kanamicina, ya que existen mutaciones reportadas para este gen (14). Recientemente, Bijpuria et al. (46) reportó que la deleción de RsmE, una metiltransferasa del ARNr 16S como GidB, condujo a un bajo nivel de resistencia a kanamicina en *M. smegmatis*.

I.2.7.4. Mecanismo de resistencia cruzada a kanamicina y

capreomicina

La resistencia cruzada se define como la resistencia a los antibióticos pertenecientes a una misma clase a partir de un único mecanismo (63), siendo el término utilizado para referirse a la resistencia tanto a kanamicina como a capreomicina. La mutación A1401G del gen *rrs* es un marcador de la resistencia cruzada a kanamicina, amikacina y capreomicina (45). Esta mutación fue identificada en el 56% de cepas resistentes a kanamicina, 78% de cepas resistentes a amikacina y 76% de cepas resistentes a capreomicina; sin embargo, la mutación A1401G también fue encontrada en el 7% de las cepas sensibles a capreomicina (14). Por ello, la resistencia cruzada a inyectables de segunda línea, como kanamicina y capreomicina, es incompleta, la cual dificulta la detección de resistencia a capreomicina (64,65). La hipótesis actual señala que la resistencia cruzada a kanamicina y capreomicina surge por el alto nivel de resistencia a kanamicina, debido a que no se utiliza la capreomicina ampliamente (65).

Figura 6. Mecanismo de resistencia de los inyectables de segunda línea en M. tuberculosis (56).

I.2.7.5. Mecanismo de resistencia a cicloserina

La sobreexpresión de las proteínas blanco Alr y Ddl causa resistencia a cicloserina en *M. smegmatis* (16). Sin embargo, no se conoce bien el mecanismo de resistencia a cicloserina, porque también se describieron mutaciones en Alr asociadas a un bajo nivel de resistencia (16). A pesar que, inicialmente, se describió a la cicloserina como un inhibidor irreversible y una droga efectiva contra un amplio espectro de bacterias, se propuso que la cicloserina se une de forma reversible a la proteína Alr (52). La inhibición reversible de la cicloserina es atribuida al crecimiento lento de *M. tuberculosis*, en consecuencia, permite la reactivación de Alr y la resistencia a cicloserina (52).

Aparte de ello, la mutación G122S en CycA (proteína transportadora de D-alanina, D-serina y glicina) fue propuesta en la resistencia natural a cicloserina en
Mycobacterium bovis bacillus Calmette-Guérin (BCG) (16). Además, se encontró mutaciones en Ald (deshidrogenasa L-alanina), en cepas clínicas resistentes a esta droga (16). También un estudio reciente reportó nuevas mutaciones en múltiples genes con funciones celulares tales como metabolismo de lípidos, metiltransferasas, respuesta al estrés y sistemas de transporte, en cepas de laboratorio con bajo nivel de resistencia a cicloserina (16).

I.2.7.6. Mecanismo de resistencia a ácido paraaminosalicílico

Los mecanismos de resistencia están relacionados a múltiples vías para disminuir la activación del profármaco PAS, disminuir el impacto de la inhibición de DHFR y generar una salida activa de la droga hacia el exterior (54). Los cuatro mecanismos de resistencia son: En el primer caso, las sobreexpresiones de DHFR y RibD compensan la inhibición de DHFR (54). En el segundo caso, las mutaciones de pérdida de función en ThyA inactivan esta proteína, en consecuencia, disminuyen la demanda de la actividad de DHFR, además, la activación de ThyX compensa la inactivación de ThyA, ya que forma dTMP a partir de del tetrahidrofolato (54). En el tercer caso, las mutaciones en DHFS reducen la activación de PAS, porque reducen la conversión de dihidrofolato a tetrahidrofolato (54). En el cuarto caso, la sobreexpresión del gen *tap*, que codifica la bomba de eflujo multidrogas Tap, aumenta el nivel MIC para PAS y otras drogas (54) (Figura 7).

Figura 7. Mecanismo de resistencia a PAS. A) Eflujo de drogas, B) Activación reducida de PAS,C) Sobreexpresión de DHFR y D) Inactivación de ThyA (54).

I.2.8 Métodos de diagnóstico de *M. tuberculosis* resistente a drogas de segunda línea

Actualmente, las pruebas de sensibilidad utilizadas para el diagnóstico de resistencia a drogas de segunda línea en Perú son *Genotype MTBDRsl v2* y el método de proporciones en agar en placa (APP) (66). La prueba *Genotype MTBDRsl v2* es una prueba de sonda en línea para la detección de resistencia a fluoroquinolonas e inyectables de segunda línea, mediante los genes *gyrA*, *gyrB*, *rrs* y *eis* (67) (Figura 8). Esta prueba tiene tres tipos de bandas: bandas de control, bandas *wild-type* y bandas con mutación y se considera un resultado positivo y válido cuando aparecen las 6 bandas control y la ausencia de una banda *wild-type* o la presencia de una banda con mutación (68). Por otro lado, el método de APP es una prueba de sensibilidad convencional en medio sólido utilizada también para la detección de respuesta al tratamiento (5). Esta prueba presenta una sensibilidad baja y una especificidad menor que la prueba molecular (69).

Actualmente, el perfil de resistencia a drogas de segunda línea se ha vuelto condicional para brindar el nuevo tratamiento de régimen corto para tuberculosis resistentes a rifampicina (TB RR), TB MDR (5), tuberculosis pre-extremadamente resistente (TB pre-XDR) y TB XDR (33). Sin embargo, se reportó que el diagnóstico de la resistencia de TB XDR, mediante la prueba *Genotype MTBDRsl*, es subóptimo debido a la baja sensibilidad (70).

Figura 8. Mutaciones obtenidas por la prueba GenoType MTBDRsl v2 (67).

I.2.9 La presión de selección farmacológica

La presión de selección se define como los agentes externos que crean un entorno y permite que los organismos con nuevas mutaciones sobrevivan y proliferen respecto a otro grupo de organismos (71). La evolución de los organismos en respuesta a una fuerte presión de selección conduce a mantener mutaciones beneficiosas (72). Las mutaciones beneficiosas son observables en la población tras un proceso de deriva genética e interferencia clonal y se caracterizan por presentar altas ventajas evolutivas (73).

De manera general, se pueden identificar dos tipos de agentes externos en la presión de selección: agentes que generan cambios en el medio ambiente asociados a la presencia de un fármaco (74) y agentes que generan cambios en el medio ambiente asociados a factores que no son fármacos, por ejemplo, un cambio en el medio ambiente asociado a la temperatura (75), pH (76), estrés oxidativo (77), respuesta inmune (78). Cuando hay un cambio en el medio ambiente asociado a la presencia de un fármaco, se considera que se está ante la presencia de una presión de selección farmacológica (8,74). En los casos excepcionales de usos inadecuados de tratamientos farmacológicos (uso de drogas inadecuadas, tratamientos incompletos), estos generan una presión de selección farmacológica que permite, relativamente, una más rápida selección de bacterias resistentes asociadas a mutaciones, que confieren una mejor aptitud (fitness) para su supervivencia y proliferación en presencia de la droga (8,17,71,74).

Dentro de la presión de selección farmacológica, existe un concepto importante denominado aptitud, que es la habilidad de supervivencia y reproducción de un organismo, en un ambiente determinado (79). Para evaluar la aptitud de *M. tuberculosis*, desde la infección hasta la transmisión, se utiliza el número reproductivo efectivo (R), sin embargo, es difícil evaluar este parámetro *in vivo* (79). Ante la ausencia de una mejor medida, se utiliza de manera aproximada, la tasa de crecimiento y ensayos de competición, para detectar una reducción de la

23

aptitud atribuida a las mutaciones causantes de la resistencia al fármaco (79). La resistencia a drogas es a menudo asociada con la reducción de la aptitud en condiciones de ausencia de la droga. Esto es en parte debido a que, usualmente, las drogas se dirigen a genes esenciales, los cuales al mutar (mutaciones necesarias para evadir al fármaco), sacrifican cierto grado de funcionalidad, lo cual provoca una disminución de la aptitud (74,79).

Un caso importante a tomar en cuenta, es la aptitud del organismo mutante, en un ambiente en presencia del fármaco. En este escenario, cuando el fármaco está presente, los organismos mutantes (resistentes al fármaco) pueden sobrevivir y transmitirse de manera eficiente, mientras que los organismos silvestres (*wild-type*) son eliminados (17,77).

El poder determinar qué mutaciones están asociadas a una presión de selección farmacológica y qué mutaciones están asociadas a una presión de selección nofarmacológica es muy complicado. Sin embargo, se puede admitir una primera aproximación: Evaluar si la mutación ocurre en el sitio de unión a la droga. La confirmación de esto, si bien no es una garantía absoluta, es una evidencia fuerte de que dicha mutación está asociada a una presión de selección farmacológica (19,20). Eventualmente puede haber mutaciones en estas regiones, que no comprometan la interacción con la droga, en consecuencia, no fueron seleccionadas por una presión de selección farmacológica, sin embargo, esto es poco probable. Por otro lado, es posible que ocurran mutaciones lejanas (físicamente a nivel estructural), al sitio de unión de la droga, que ejerzan un efecto perturbador a distancia, alterando la estructura local del sitio de unión de la droga. Este tipo de mutaciones son muy probables de haber sido seleccionadas por una presión de selección farmacológica. Por ejemplo, en el caso de la droga rifampicina, ésta se une a la subunidad RpoB de la ARN polimerasa, impidiendo la salida del ARN, y bloqueando la correcta función del mecanismo de transcripción. Las mutaciones asociadas a resistencia a rifampicina, en su mayoría, ocurren en la subunidad RpoB, sin embargo, existen mutaciones igualmente asociadas a resistencia a rifampicina, que ocurren en otras regiones, posiblemente generando efectos perturbadores a distancia (80).

I.3. Planteamiento de la Investigación

La resistencia a drogas de segunda línea en M. tuberculosis es preocupante, porque la enfermedad se vuelve incurable (26). En un estudio, se describió el porcentaje de casos de resistencia adquirida a drogas de segunda línea en los pacientes TB MDR, donde los casos resistentes a estreptomicina fueron 74%; etionamida, 29%; capreomicina, 13%; ciprofloxacina, kanamicina. 16%: 12% ácido v paraaminosalicílico (PAS), 7%; siendo la etionamida junto con los inyectables de segunda de línea y las fluoroquinolonas, las drogas que generan una mayor prevalencia de resistencia en este grupo (1). Esta situación se mantiene hasta la actualidad, además, se ha detectado cepas resistentes a levofloxacina y cepas TB XDR en dispersión (4).

En la resistencia a fluoroquinolonas, 64-85% de cepas resistente a fluoroquinolonas presentaron mutaciones dentro del QRDR de GyrA (59,81), donde ciertas mutaciones de esta región están asociadas con el alto y bajo nivel de resistencia (82), sin embargo, la variabilidad del nivel de resistencia no se conoce para el resto de mutaciones. En la resistencia a kanamicina, la mutación A1401G en el gen *rrs* genera un alto nivel de resistencia (65). Por otro lado, 60% de las cepas clínicas con la mutación A1401G fueron resistentes a capreomicina, contradiciendo a lo

esperado por los resultados *in vitro*, donde el 100% de las cepas modificadas genéticamente con la mutación A1401G resultaron resistentes a capreomicina (83). Asimismo, en la resistencia a capreomicina mediante TlyA y la resistencia a PAS mediante ThyA, se describieron mutaciones puntuales y mutaciones con cambio de marco de lectura, las cuales fueron asociadas a resistencia a nivel experimental (45,84).

Se describió que la distribución de mutaciones en genes asociados a resistencia en *M. tuberculosis* se caracteriza por presentar mutaciones alrededor de los sitios activos o sitios catalíticos (19,85), mientras que, en otros genes asociados a resistencia, la mayoría de mutaciones se encuentran lejos de los sitios activos o sitios catalíticos y pocas mutaciones se encuentran en estos sitios funcionales (20). La región con mayor probabilidad de acumular mutaciones es llamada región *hotspot* y es determinada por una presión de selección (86).

En la resistencia adquirida a antibióticos, existe la presión de selección farmacológica, la cual conduce a una mayor proliferación de cepas resistentes (8,17,71,74). La presión de selección farmacológica fue señalada como un factor que promueve la acumulación de mutaciones (región *hotspot*) cerca de los sitios activos y catalíticos (19,20). Considerando que es difícil evaluar las mutaciones sometidas a una presión de selección farmacológica a nivel experimental (79), la distribución de mutaciones brinda información del patrón de mutaciones y regiones importantes, que pueden estar involucrados en la resistencia a antibióticos (19,20). Además, se reportó que una región *hotspot* en la estructura tridimensional da a conocer mayores indicios del rol funcional de mutaciones (21,87,88), lo cual permitiría relacionar las mutaciones de un *hotspot* con su fenotipo resistente.

Con base en que varios antibióticos se dirigen a las funciones celulares esenciales y las proteínas blanco con estas funciones son muy conservadas, se empieza a diferenciar las proteínas blanco en proteínas esenciales y no esenciales: las proteínas blanco esenciales tienen una función biológica, que es inhibida por la acción del fármaco; mientras que las proteínas blanco no esenciales cuentan con la capacidad de activar profármacos y no son determinantes para el crecimiento de M. tuberculosis (79). Los genes blanco son mayormente genes esenciales (89). Durante la presión evolutiva de M. tuberculosis, las proteínas no esenciales pierden su función, mientras proteínas esenciales para la supervivencia dentro del huésped persisten (90). Bajo la presión de selección farmacológica, se espera que la función de las proteínas esenciales con mutaciones se siga manteniendo; mientras que la función proteínas no esenciales con mutaciones se pierda y que esta pérdida de la actividad de la proteína no esencial no afecte la supervivencia de la bacteria. Dado que la mayoría de las drogas se dirigen a genes esenciales (79), el término de genes esenciales indicaría una presión de selección farmacológica, mientras que el término de genes no esenciales indicaría una posible presión de selección farmacológica, porque no sería muy común.

En la resistencia adquirida de antibióticos, se estudia las mutaciones en genes blanco (17). En la resistencia a fluoroquinolonas, el complejo GyrA y GyrB es el blanco molecular de estas drogas (39). Sin embargo, también estudios también reportaron mutaciones en genes no blanco como en TlyA en la resistencia a capreomicina (45), en ThyA en la resistencia a ácido paraaminosalicílico (45,84) y en GidB en la resistencia a kanamicina (14). Las mutaciones en TlyA y ThyA provocaron una inactivación de la proteína en la resistencia a las drogas mencionadas (45,84). También, en la resistencia a cicloserina, se propuso múltiples genes asociados a resistencia, donde la enzima Alr es el blanco de la cicloserina (16).

Ante ello, la determinación y comparación de la distribución de mutaciones encontradas en el Perú respecto a aquella reportada en el resto del mundo permitiría evaluar si la distribución de mutaciones en cepas resistentes de Perú es similar al resto del mundo. Esto indicaría la existencia de un patrón conservado de mutaciones a nivel global y sugiere una presión de selección farmacológica uniforme. Asimismo, la identificación de regiones *hotspots* en el sitio de unión a la droga o el sitio activo en la secuencia y estructura de la proteína codificada permitiría conocer mutaciones sometidas a una presión de selección farmacológica de las drogas de segunda línea, lo cual es un primer paso para conocer el rol funcional de las mutaciones en la resistencia a drogas de segunda línea en *M. tuberculosis*.

I.4. Justificación

Actualmente, existe una gran preocupación sobre la resistencia a drogas de segunda línea en *M. tuberculosis*, debido a la identificación de cepas resistentes a levofloxacina, una nueva fluoroquinolona incorporada en el tratamiento de TB MDR, y la existencia de cepas TB XDR en dispersión (4), las cuales determinan que el tratamiento de tuberculosis sea más difícil de curar (26). Por ello, se promueve investigaciones sobre nuevos diagnósticos para una temprana detección de la resistencia a drogas de segunda línea (70).

En la biología molecular, se promueve el uso de información genómica pública en los estudios para una mayor perspectiva sobre el objeto de estudio. El uso de diferentes fuentes de información, bases de datos públicas y privadas, permite

28

encontrar una variedad de mutaciones en cepas resistentes, lo cual es importante ante la baja cantidad de estudios existentes sobre mutaciones asociadas a resistencia mediante mutagénesis. Así, la recopilación de mutaciones brinda información para determinar y comparar la distribución de mutaciones de Perú respecto a aquella reportada a nivel global. Asimismo, la distribución de mutaciones permite identificar regiones, en genes asociados a resistencia, con mayor probabilidad de presentar mutaciones, considerando que solo se ha reportado una región determinante de resistencia a quinolonas (QRDR) en la ADN girasa (39). Asimismo, la distribución de mutaciones da a conocer si la presión de selección farmacológica es uniforme o diferente en Perú respecto al nivel global. Por lo tanto, a largo plazo, la distribución de mutaciones brindaría información de mutaciones y regiones *hotspots* para el desarrollo de nuevas drogas e incorporación de nuevas regiones específicas dentro de las pruebas moleculares para la detección de resistencia a drogas de segunda línea.

Debido a que existe un mayor interés en conocer la evolución de la resistencia en *M. tuberculosis* (74,79) por la existencia de cepas TB XDR en dispersión (4), la información sobre mutaciones específicas asociadas a una presión de selección farmacológica brinda un mayor conocimiento en la evolución de *M. tuberculosis* en la resistencia. Cabe resaltar que, en el enfoque de la presión de selección farmacológica, es importante diferenciar genes esenciales y genes no esenciales, debido a que la mayoría de las drogas están dirigidas a genes esenciales. Por ello, la identificación de mutaciones en un gen no esencial significa una posible presión de selección farmacológica, que no fue señalada anteriormente. Las metodologías actuales para evaluar la aptitud de bacterias resistentes no representan la dinámica

de *M. tuberculosis* o puede requerir estudios de cohorte laboriosos (79). Por ello, dado que es difícil evaluar directamente la aptitud de cepas resistentes con la metodología hasta ahora reportada (79), la identificación de mutaciones sometidas a una presión de selección farmacológica *in silico* brinda mutaciones potenciales a ser evaluadas en la evolución de *M. tuberculosis* para su correlación con el fenotipo resistente mediante estudios de mutagénesis.

II. Hipótesis

La distribución de mutaciones en genes asociados a resistencia a drogas de segunda línea de *M. tuberculosis* de Perú no es diferente del resto del mundo.

III. Objetivos

Objetivo General

 Comparar las distribuciones de mutaciones asociadas a resistencia a drogas de segunda línea de cepas de Perú y del mundo.

Objetivos específicos

- Comparar las distribuciones de mutaciones asociadas a resistencia en la secuencia de la proteína.
- Evaluar las mutaciones en la estructura tridimensional de la proteína.
- Evaluar la presión de selección farmacológica de las drogas de segunda línea asociada a mutaciones que afectan al sitio activo y asociadas a sitios distantes del sitio activo.

IV. Metodología

IV.1. Diseño del estudio

Estudio observacional descriptivo de tipo transversal.

IV.2. Población y Muestra

En el análisis de distribuciones de las mutaciones en diferentes genes, reportados en Perú, se utilizaron 4 bases de datos secundarias. Las bases de datos secundarias provienen de 4 estudios previos realizados en el Laboratorio de Bioinformática y Biología molecular de los Laboratorios de Investigación y Desarrollo de la Universidad Peruana Cayetano Heredia (LID-UPCH). La primera base de datos secundaria tiene 2139 cepas con metadatos; la segunda base datos, 469 genomas de *M. tuberculosis*, las cuales son procedentes de aislados de pacientes, entre el 2008 y 2012, con tuberculosis de Lima y Callao. La tercera base de datos contiene 99 genomas de la base de datos de 469 genomas y la última base de datos contiene 1883 genomas con mutaciones. En la selección de las muestras, estos estudios utilizaron los siguientes criterios: las muestras fueron aisladas de pacientes con tuberculosis activa y no relacionados y, además, las cepas sensibles o resistentes fueron detectadas mediante la prueba de Proporciones usando Lowenstein Jensen. Además, en el análisis de distribuciones de las mutaciones en diferentes genes, reportados en el resto del mundo, se utilizaron una base de datos de 703 resultados, construida a partir de la revisión de artículos de PUBMED y una base de datos de 1197 accesiones, proveniente de la base de datos pública de PATRIC.

IV.3. Criterios de selección

Criterios de inclusión

- Mutación asociada a resistencia a drogas de segunda línea reportada como específica para la droga.
- Mutación que presenta información geográfica

Criterios de exclusión

- Mutación cuya asociación a resistencia a drogas de segunda línea fue descartada.
- Mutación que presenta información geográfica y experimental incompleta.

IV.4. Operacionalización de variables

Las variables de estudio y sus indicadores se encontraron en la Tabla 2.

Variable	Definición	Tipo de variable según su naturaleza	Tipo de variable según su relación	Escala de medición	Indicador	Definición Operacional
Fenotipo de sensibilidad	Indica si la cepa es resistente a una droga mediante la evaluación del crecimiento en presencia de la droga.	Cualitativa	Dependiente	Nominal	1,0	1: Resistente 0: Sensible
Tipo de mutación	Las diferentes formas en que la secuencia de ADN puede cambiar.	Cualitativa	Independiente	Nominal	Mutación puntual, del, ins, fs, stop	del: deleción; ins: inserción; fs: mutación con cambio de marco de lectura; stop: codón de parada
Polimorfismo de nucleótido único (SNPs)	Variación en la posición de una base única en el ADN: adenina (A), timina (T), citosina (C) o guanina (G).	Cualitativa	Independiente	Nominal	1,0	1: Presente 0: Ausente
Sustituciones de aminoácidos	Variación en la posición de un aminoácido en la proteína: alguno de los 20 aminoácidos.	Cualitativa	Independiente	Nominal	1,0	1: Presente 0: Ausente

IV.5. Instrumentos

Los recursos bioinformáticos utilizados se describen en la Tabla 3.

Tabla 3. Base de datos y programas bioinformáticos.

Recursos	Características	Página web			
Bases de datos					
PATRIC	Base de datos de recursos bioinformáticos de patógenos.	https://www.patricbrc.org/			
Uniprot	Base de datos universal de proteínas y de información funcional.	https://www.uniprot.org/			
PDB	Repositorio universal de las estructuras 3D de macromoléculas biológicas.	https://www.rcsb.org/			
Programas bioinformáticos					
PyMOL v.2.4.1	Visualizador molecular de código abierto mantenido y distribuido por Schrödinger.	https://pymol.org/2/			
ClustalX	Programa de alineamiento múltiple de secuencias de forma progresiva.	http://www.clustal.org/clustal2/			
SNP-sites	Herramienta para extraer SNPs desde un alineamiento multifasta	https://usegalaxy.org.au/			

IV.6.1 Manejo de base de datos secundarias y recopilación de mutaciones

En las siguientes bases de datos, se evaluaron 17 genes para los 5 antibióticos: se encontraron 4 genes en la resistencia a fluoroquinolonas: *gyrA* (91–93), *gyrB* (94,95), *mfpA* (96) y *eccC5* (97); 8 genes en la resistencia a kanamicina y/o capreomicina: *gidB* (14,98), *tlyA* (99,100), *rv3728* (101), *rrs* (102,103), *idsA2* (103), *eis* (67,102), *whiB7* (104), *tap* (105); 2 genes en la resistencia a cicloserina: *alr* (106,107) y *cycA* (108); y 3 genes en la resistencia a PAS: *thyA* (109,110), *dfrA* (111) y *folC* (109,110). La recopilación de mutaciones fue realizada de forma manual en Excel.

IV.6.1.1. Manejo de bases de datos secundarias de Perú

Se correlacionaron las bases de datos de genomas (1883 y 99 genomas) con las bases de datos de metadatos (2139 y 469 accesiones) del Laboratorio de Bioinformática y Biología molecular de los Laboratorios de Investigación y Desarrollo de la Universidad Peruana Cayetano Heredia (LID-UPCH) para tener un consolidado de mutaciones presentes en cada genoma con la información de sensibilidad/resistencia y así realizar posteriores análisis. En la base de datos de metadatos, se describe si las mutaciones están en cepas resistentes o sensibles de acuerdo con la prueba de Proporciones usando *Lowenstein Jensen* (representadas con los valores de 1 y 0 respectivamente), mientras que, en la base de datos de genomas, se encontraron las mutaciones de cada genoma. La organización de la base de datos se realizó en Excel con ayuda de Jupyter Notebook en Anaconda 4.10.1. La compilación de base de datos resultó en 441 genomas con información

de sensibilidad/resistencia. Se realizó la recopilación de mutaciones y se encontraron mutaciones en cepas resistentes para las proteínas GyrA, GyrB, GidB, TlyA, Rv3728, CycA y ThyA y el gen *rrs* (Figura 9).

IV.6.1.2. Búsqueda de mutaciones en la base de datos pública PATRIC para el resto del mundo

La base de datos pública PATRIC es una base de datos especializada de microorganismos que contiene información de genomas y fenotipo de sensibilidad/resistencia, los cuales son de interés para el presente estudio. Se buscó la información del área geográfica de procedencia desde la pestaña "genomes", donde se encontraron 29 836 resultados y se escogieron los siguientes filtros: genoma completo o WGS; resistencia intermedia, resistente y sensible; buena calidad del genoma; y de origen humano. Por lo tanto, se descargó 17010 accesiones con información geográfica. Por otro lado, se buscó la información de sensibilidad/resistencia, para las 5 drogas de interés, desde la pestaña "amr phenotype", donde se encontraron 203 152 resultados y se escogieron los siguientes filtros: fenotipo resistente y sensible; y los cinco antibióticos (ciprofloxacina, amikacina, capreomicina, kanamicina, cicloserina, paraaminosalicílico). Luego de la correlación de ambas informaciones a partir del número de accesión, se obtuvo 5060 resultados como metadatos.

Con la lista de accesiones de la tabla de 5060 resultados, se descargaron los proteomas (archivos con extensión FAA) y genomas (archivo con extensión FRN) correspondientes. Luego, se extrajeron las secuencias de las 16 proteínas de interés desde los proteomas y el gen *rrs* desde los genomas y se colocaron en un archivo multifasta para cada uno de los 17 genes. Se utilizó el genoma de referencia *M*.

39

tuberculosis H37Rv (GenBank: NC_000962.3) del sistema de numeración 2002 (112) en el alineamiento múltiple en ClustalX 2.0 (113). La identificación de las SNP-sites en mutaciones fue realizada la plataforma en Galaxy (https://usegalaxy.org.au/), a partir del alineamiento múltiple, y revisada manualmente. Se tabularon las mutaciones obtenidas en Excel con ayuda de Jupyter Notebook en Anaconda 4.10.1. Finalmente, esta tabla de mutaciones fue correlacionada con la tabla de metadatos, lo cual resultó en 1197 accesiones con mutaciones, información de sensibilidad/resistencia y país de procedencia. En la recopilación de mutaciones, se encontraron mutaciones en cepas resistentes para las proteínas GyrA, GyrB, GidB, IdsA2, WhiB7, Eis, TlyA, CycA, Alr, ThyA, FolC y el gen rrs (Figura 9).

IV.6.1.3. Búsqueda de mutaciones en la literatura para Perú y el resto del mundo

Se realizó una búsqueda de artículos en PUBMED Central, hasta noviembre del los términos "resistencia". *"Mycobacterium* 2021, con tuberculosis". "fluoroquinolones" y el nombre de cada droga. Los artículos seleccionados reportaron mutaciones en cepas resistentes y cumplen los siguientes criterios: especificaron la droga evaluada en la prueba de sensibilidad e indicaron el país de procedencia de los aislados clínicos. No se consideraron las mutaciones en cepas resistentes a una familia de drogas. Se tabularon las mutaciones con la información de droga, país y referencia bibliográfica por antibiótico (Anexo 12 y 13), lo cual resultó en 703 mutaciones con la información de resistencia, procedencia geográfica y referencia bibliográfica. Se encontraron mutaciones en cepas

resistentes principalmente para las proteínas GyrA, GyrB, GidB, TlyA, ThyA, FolC y el gen *rrs* (Figura 9).

IV.6.2 Identificación de mutaciones potenciales asociadas a resistencia Se seleccionaron las mutaciones únicas presentes en cepas exclusivamente resistentes. Además, cuando una mutación única se encontró tanto en cepas resistentes como en cepas sensibles, se escogió la mutación que se encontraba en una mayor proporción de cepas resistentes. Por otro lado, no se consideraron mutaciones encontradas exclusivamente en cepas sensibles. De forma similar, cuando la mutación única se encontró en una mayor proporción de cepas sensibles, esta mutación no fue considerada para análisis posteriores.

IV.6.3 Determinación de la distribución de mutaciones en la secuencia

Se graficaron las mutaciones únicas en un histograma dividido por los dominios de la estructura secundaria de la proteína. En la proteína GyrA, se definieron los dominios de la estructura secundaria con base en la numeración de Piton et al. (39); mientras que, en la proteína GyrB (PDB: 6GAV), GidB (PDB: 7CFE), TlyA (PDB: 5KYG) y ThyA (PDB: 3QJ7), se definieron con base en la estructura de los cristales visualizados en Pymol versión 2.4.1. Se graficaron las mutaciones peruanas y reportadas en el resto del mundo de forma separada. Cabe indicar que, en la identificación de mutaciones, se encontraron varias mutaciones múltiples, es decir, dos o más mutaciones presentes en un mismo gen o en genes diferentes en una cepa. Por ello, varias mutaciones únicas se graficaron como mutaciones múltiples, si se presentaba esta situación (Figura 10).

IV.6.3.1. Análisis estadístico para la comparación de las distribuciones de mutaciones de Perú y del resto del mundo

Se comparó las distribuciones de mutaciones de Perú y del resto del mundo a lo largo de los dominios de estructura secundaria. Se realizó un conteo manual de las mutaciones únicas por dominio de estructura secundaria. Las mutaciones únicas son las mutaciones que contribuyen una vez en el conteo para evitar una alta representación. Este criterio fue necesario cuando había una mutación múltiple. Las frecuencias de las mutaciones únicas normalizadas en cada estructura secundaria fueron estimadas mediante una normalización que consistió en el número de mutaciones únicas en la estructura secundaria dividido por el número de mutaciones únicas total reportadas en la proteína. Esto procedimiento fue realizado para la distribución de mutaciones encontradas en Perú y reportadas en el resto del mundo por separado. Se evaluó la independencia de ambas distribuciones mediante la prueba de correlación de rangos de Spearman. Además, se utilizó la prueba de rangos signados para datos apareados (signed-rank) para evaluar la diferencia de las frecuencias de mutaciones únicas entre cada par de estructuras secundarias en la comparación de las distribuciones de mutaciones de Perú y del resto del mundo contra la hipótesis nula de la diferencia es igual a cero. Las pruebas estadísticas fueron evaluadas con un nivel de significancia del 5% en el programa Stata 14.0. Las evaluaciones estadísticas fueron realizadas para mutaciones en GyrA en cepas resistentes al menos a ciprofloxacina y a fluoroquinolonas, mientras que, en GyrB, GidB, TlyA y ThyA, no se realizaron las pruebas estadísticas debido a la baja cantidad de mutaciones (Figura 10).

IV.6.4 Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia y estructura de la proteína codificada

Se inició con el mapeo del sitio de unión a la droga y el sitio activo para las 5 proteínas del presente estudio en la gráfica lineal de los dominios de estructura secundaria. También se mapearon sitios funcionales adicionales en GyrA y GyrB (sitio catalítico, sitio de unión a metales, regiones conservadas). Luego, se clasificaron las mutaciones según los sitios funcionales en la gráfica lineal de los dominios de estructura secundaria. Por último, se identificaron las regiones *hotspots* a partir de la acumulación de mutaciones (3 mutaciones como mínimo) en los sitios funcionales de GyrA, GyrB, GidB, TlyA y ThyA en la gráfica lineal de los dominios de estructura secundaria. Se calculó el porcentaje de mutaciones acumuladas encontradas en Perú y reportadas en el resto del mundo en GyrA, mientras que se calculó el porcentaje de mutaciones acumuladas de forma conjunta en las proteínas GyrB, GidB, TlyA y ThyA, debido a la baja cantidad de mutaciones (Figura 10).

Para relacionar las mutaciones con la función en la estructura, también se mapearon los sitios funcionales en las estructuras cristalinas de las proteínas mediante Pymol versión 2.4.1. Se clasificaron las mutaciones en la estructura tridimensional según los sitios funcionales y se identificaron las regiones hotspots a partir de la acumulación de mutaciones en los sitios funcionales de las 5 proteínas. Se graficaron las mutaciones fuera del QRDR de GyrA en el cristal 5BTC; asimismo, Se graficaron todas las mutaciones en GyrB, GidB, TlyA y ThyA en los cristales con PDBs: 6GAV, 7CFE, 5KYG y 3QJ7, respectivamente. La estructura de TlyA fue AlphaFold Uniprot completada con la estructura de de

(https://www.uniprot.org/uniprot/WJ63) mediante un alineamiento estructural en Pymol versión 2.4.1 (Figura 10).

IV.6.5 Evaluación de la presión de selección farmacológica de las drogas de segunda línea

Antes de realizar la evaluación de la presión de selección farmacológica, se consideró lo siguiente: Para las mutaciones en genes asociados a resistencia a drogas de segunda línea que se encontraron estructuralmente cerca del entorno del sitio de unión a la droga o sitio activo, se asume que son mutaciones sometidas a una presión de selección farmacológica; mientras que para cualquier mutación lejos de este sitio de unión a la droga o sitio activo, se asume que es una mutación sometida a una presión de selección no farmacológica, debido a que no interactúa de manera directa con el fármaco (19,20). En el presente estudio, estas mutaciones sometidas a una presión de selección se identificaron a partir de las regiones hotspots (regiones del genoma con mayor probabilidad de albergar mutaciones y determinadas por la presión de selección positiva (86)). La región hotspot en la estructura es identificada mediante un agrupamiento espacial, la cual es de ayuda para comprender el rol funcional de las mutaciones de la región hotspot con base en su localización espacial en la proteína (21). Además, se asume que existe una presión de selección farmacológica cuando las mutaciones se encuentran en un gen esencial, mientras se asume que existe una posible presión de selección farmacológica cuando las mutaciones se encuentran en un gen no esencial (Figura 10).

Se evaluaron si las mutaciones de las regiones *hotspots* en la estructura se encontraron cerca del sitio de unión a la droga o del sitio activo mediante un punto de corte de 12 Å (114,115). Para ello, se realizó una mutagénesis dirigida *in silico*, luego, se seleccionó la distancia mínima entre el centro de masa del sitio de unión a la droga o el sitio activo y las cadenas laterales de las mutaciones de las regiones *hotspots* en Pymol v.2.4.1. Para visualizar este resultado, se realizó un gráfico de distancias de las mutaciones al centro de masa del sitio funcional.

Se construyeron los centros de masas a partir del sitio de unión a la droga o sitio activo de las 5 proteínas en sus respectivos PDBs en Pymol v.2.4.1: En el complejo ADN girasa/ADN (PDB: 5BTC), se seleccionaron los residuos 84-88, 86-91 de GyrA, los residuos 459-462, 480-486 y 498-502 de GyrB y 2 nucleótidos en el ADN, los cuales forman el sitio de unión a la droga (QBP) según Piton et al. (39); en GidB (PDB: 7CFE), se seleccionaron los residuos V36, G37, S70, A72, G73, L74, V77, L91, E92, P93, L94, G117, R118, A119, R137 y A138, los cuales forman el sitio de unión a SAM según Verma et al. (116); en TlyA (PDB: 5KYG), se seleccionaron los residuos 60-63/90-94, los cuales forman el sitio de unión a SAM, y los residuos K69/D154/K182/E238, los cuales forman la tétrada catalítica según Witek et al. (49); en ThyA (PDB: 3QJ7), se seleccionaron los residuos 143-172, los cuales forman el sitio de unión al cofactor MTHF, y el residuo 127 del sitio de unión al sustrato dUMP según Pandey et al. (15). Además, para los centros de masa de los sitios funcionales adicionales en GyrA, se seleccionaron los residuos R128 y Y129, los cuales forman el sitio catalítico de unión al ADN según Piton et al. (39); y la región 211-214 en GyrA (PDB: 5BTC) y la región 214-245 en GyrB (PDB:6GAV), los cuales forman los dos *loops* conservados de GyrA y GyrB según Petrella et al.

(40). Además, se utilizó este mismo complejo 6GAV-5BTC para medir las distancias de aquellas mutaciones en GyrB que no se ubicaban en el PDB 5BTC.

IV.7. Consideraciones éticas

El presente estudio es un análisis de bases de datos, en consecuencia, no se tendrá contacto alguno con los sujetos de las muestras. Se solicitó el formato de exoneración al Comité de Ética de la UPCH (CIE-UPCH). Este protocolo se registró en el Sistema Descentralizado de Información y Seguimiento a la Investigación (SIDISI) – Dirección universitaria de Investigación, Ciencia y Tecnología (DUICT), y fue evaluado por el CIE-UPCH previamente a su ejecución. Durante la implementación del estudio, se siguió estrictamente las recomendaciones realizadas por el CIE-UPCH.

IV.8. Limitaciones

 No se reportó un indicador directo de la presión de selección farmacológica del tratamiento de drogas de segunda línea sobre los genes asociados a resistencia.

V. Resultados

Este estudio muestra por primera vez la recopilación de mutaciones, en genes asociados a resistencia a drogas de segunda línea antituberculosas, a partir de diferentes fuentes de información pública y privada para determinar y comparar las distribuciones de mutaciones de Perú y del resto del mundo. Se comparó el patrón de distribución molecular de las mutaciones en la secuencia a partir de pruebas estadísticas. Luego, se identificaron regiones *hotspots* en la estructura primaria y terciaria de las proteínas asociadas a resistencia. Finalmente, se evaluaron si las mutaciones de las regiones *hotspots* se encontraron cerca del sitio de unión a la droga o el sitio activo para estimar si existen mutaciones específicas sometidas a una presión de selección farmacológica de las drogas de segunda línea en la resistencia en *M. tuberculosis*.

V.1. Identificación de mutaciones

V.1.1 Mutaciones del presente estudio

La base de datos compilada de 441 genomas presentó 72 (16%) cepas resistentes a alguna de las drogas de segunda línea, donde 22 (30%) cepas son resistentes a ciprofloxacina, 12 (17%) cepas son resistentes únicamente a capreomicina, 21 (28%) cepas son resistentes a kanamicina, 18 (24%) cepas son resistentes a kanamicina-capreomicina, 2 (3%) cepas son resistentes a cicloserina y finalmente 12 (16%) cepas son resistentes a PAS (Tabla 4).

Grupo	Gen/droga	#R	# M
		evaluadas	
Fluoroquinolona	Ciprofloxacina	22 (15) ^A	
	GyrA		12 (8) ^B
Inyectables de	Kanamicina	21 (4) ^A	. ,
segunda línea	rrs		$2(2)^{B}$
	GidB		8 (4) ^B
	Capreomicina	12 (0) ^A	
	GidB		5 (1) ^B
	TlyA		2 (2) ^B
	Kanamicina-capreomicina	18 (6) ^A	
	rrs		1 (1) ^B
	GidB		7 (2) ^B
Otra droga de	Cicloserina	2 (0) ^A	
segunda línea	CycA		$1(0)^{B}$
Droga de segunda	PÁS	12 (0) ^A	~ /
línea complementaria	ThyA	~ /	3 (2) ^в

Tabla 4. Resultado de las bases de datos secundarias de Perú.

#R: Número de cepas resistentes

#M: Número de mutaciones
Ácido paraaminosalicílico (PAS)
A: Número de mutaciones en el QRDR o en el sitio activo.
B: Número de mutaciones potenciales asociadas a resistencia

Tabla 5. Mutaciones únicas exclusivamente en cepas resistentes o presentes en una mayor proporción de cepas resistentes a ciprofloxacina, kanamicina, capreomicina, kanamicina-capreomicina y ácido paraaminosalicílico en GyrA, *rrs*, GidB, TlyA, Rv3728 y ThyA. Se muestra el número total de cepas resistentes/sensibles para el presente estudio, así como el número de cepas que presentaron al menos la mutación en la proteína o el gen.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
Ciprofloxacina						
1	GyrA	H70R	22	419	1	0
2	GyrA	A90V	22	419	3	2
3	GyrA	D94G	22	419	7	0
4	GyrA	D94H	22	419	1	0
5	GyrA	D94A	22	419	2	0
6	GyrA	D94N	22	419	2	1
7	GyrA	R292G	22	419	1	0
8	GyrA	T267I	22	419	1	9
Kanamicina						
1	rrs	A514T	21	420	1	0
2	rrs	A1401G	21	420	3	0
3	GidB	G73R	21	420	3	1
4	GidB	R47W	21	420	2	1
5	GidB	S70R	21	420	1	0
6	GidB	T146K	21	420	1	0
Capreomicina						
1	GidB	N51K	12	429	1	0
2	TlyA	G232D	12	429	7	1
3	TlyA	S228R	12	429	1	0
4	Rv3728	G636A	12	429	1	0
Kanamicina-capreomicina						
1	rrs	A1401G	18	423	1	0
2	GidB	G73R	18	423	3	1
3	GidB	V124A	18	423	4	1
Ácido	Ácido paraaminosalicílico					
1	[–] ThyA	L8Q	12	429	2	2
2	ThyA	H207R	12	429	6	5

#R: Número de cepas resistentes#S: Número de cepas sensiblesKanamicina (KM)Capreomicina (CM)Kanamicina y capreomicina (KM-CM)

V.1.1.1. Resistencia a ciprofloxacina

En las 22 cepas resistentes a ciprofloxacina del total de 441 cepas, se encontraron 12 mutaciones únicas. En este grupo, 15 cepas resistentes (68%) presentaron mutaciones dentro del QRDR de GyrA, donde 3 cepas (14%) presentaron una segunda mutación fuera del QRDR para el presente estudio (Anexo 1).

Entre las 12 mutaciones únicas, 5 mutaciones (H70R, D94G, D94H, D94A y R292G) en GyrA se encontraron solo en cepas resistentes; 2 mutaciones (A90V y D94N) se encontraron en una mayor proporción de cepas resistentes. El resto de mutaciones fueron encontradas en una mayor proporción en cepas sensibles (E21Q, S95T, G247S, G668D y T267I) (Anexo 2), donde la mutación T267I fue también reportada en una cepa peruana (117). Todas las mutaciones evaluadas fueron reportadas previamente (118–120), sin embargo, 4 de las 12 mutaciones (33%): D94G, D94H, A90V y D94N fueron asociadas a resistencia a fluoroquinolonas mediante mutagénesis (95,121). Se seleccionaron las mutaciones H70R, A90V, D94G, D94H, D94A, D94N y R292G, que se encontraron exclusivamente en cepas resistentes o en mayor proporción de cepas resistentes, más la mutación T267I, que también fue reportada en una cepa peruana (117), para su evaluación (Tabla 5). Por otro lado, la mutación V301L en GyrB fue la única mutación encontrada en una cepa resistente, sin embargo, esta mutación no fue confirmada en la resistencia a fluoroquinolonas (95). Por ello, no fue seleccionada para los análisis del presente estudio.

V.1.1.2. Resistencia a kanamicina

En las 21 cepas resistentes a kanamicina, se encontraron que 4 cepas resistentes presentaron una mutación en el gen *rrs*, siendo la principal mutación A1401G; 16

cepas resistentes presentaron 8 mutaciones en GidB sin presencia de mutaciones en el gen *rrs*; y una cepa resistente no presentó mutaciones en GidB o en el gen *rrs* (Anexo 3). En este grupo, 4 (19%) de las 21 cepas resistentes presentaron las mutaciones G73R y S70R, que afectan directamente a alguno de los sitios de unión a SAM (residuos 36-37, 70, 72-74, 77, 91-94, 117-119, 137-138) (116).

Entre las 8 mutaciones únicas de GidB, 2 mutaciones (S70R y T146K) se encontraron en cepas resistentes; 2 mutaciones (G73R y R47W) se encontraron en una mayor proporción de cepas resistentes; y 4 mutaciones (E92D, L16R, P84L y L145F) se encontraron en una mayor proporción de cepas sensibles (Anexo 4). Teniendo en cuenta lo anterior, se seleccionaron las mutaciones T146K, S70R, G73R y R47W, que se encontraron exclusivamente en cepas resistentes o en mayor proporción para este grupo resistente (Tabla 5).

V.1.1.3. Resistencia a capreomicina

En las 12 cepas resistentes a capreomicina, ninguna cepa presentó mutaciones en el gen *rrs*, a diferencia de las cepas resistentes a kanamicina. 11 (92%) de las 12 cepas resistentes a capreomicina presentaron 5 mutaciones en GidB; 8 (67%) de las 12 cepas resistentes a capreomicina presentaron las mutaciones G232D y S228R en TlyA; y 1 de las 12 cepas resistentes no presentó mutaciones en TlyA, GidB o en el gen *rrs* (Anexo 5). Ninguna de las cepas resistentes presentó mutaciones que afecten directamente al sitio de unión a SAM (residuos 90-94/60-63) o la región de la tétrada catalítica (residuos K69/D154/K182/E238) de TlyA (49).

En TlyA, la mutación S228R se encontró en una cepa resistente y fue una mutación nueva, mientras que la mutación G232D se encontró en una mayor proporción de cepas resistentes. Se reportó la capacidad de generar resistencia a capreomicina de la mutación G232D mediante mutagénesis (45). Por otro lado, a pesar de que se encontraron 5 mutaciones en GidB, en cepas resistentes a capreomicina, la mayoría de mutaciones estaban en una mayor proporción en cepas sensibles (Anexo 6), y la mutación N51K se encontró solo en una cepa resistente. Se seleccionaron las mutaciones G232D y S228R de TlyA para su evaluación (Tabla 5).

V.1.1.4. Resistencia cruzada a kanamicina y capreomicina

En las 18 cepas resistentes a kanamicina y capreomicina (KM-CM), se encontró que solo 1 (6%) de las 18 cepas resistentes a KM-CM presentó una mutación en el gen *rrs* (A1401G) junto con una mutación (V142A) en GidB; 14 (82%) de las 17 cepas resistentes sin mutaciones en el gen *rrs* presentaron 7 mutaciones en GidB; y 3 cepas resistentes no presentaron mutaciones en GidB o en el gen *rrs* (Anexo 7). Se encontraron 6 cepas resistentes (35%) con las mutaciones G73R y E92D, que afectan uno de los sitios de unión a SAM.

De las 7 mutaciones en GidB, 2 mutaciones (G73R y V124A) se encontraron en una mayor proporción en cepas resistentes (Tabla 5), mientras que el resto de mutaciones (P78L, L79W, L90R, E92D y L16R) se encontraron en una mayor proporción de cepas sensibles (Anexo 8). Por ello, se seleccionaron las mutaciones G73R y V124A para su posterior evaluación (Tabla 5).

V.1.1.5. Resistencia a cicloserina

No se encontraron mutaciones en Alr, a pesar de ser una proteína blanco en la resistencia a cicloserina (51,107,122). Las 2 cepas resistentes presentaron una mutación (R93L) en CycA. Por otro lado, todas las 439 cepas sensibles presentaron al menos una mutación en CycA, donde 6 cepas (\approx 1%) presentaron al menos una

mutación en Alr (Anexo 9). En la resistencia a cicloserina, se reportó otros mecanismos de resistencia como la sobreexpresión de la proteína Alr (51), lo que puede explicar la falta de mutaciones en esta proteína en el presente estudio. Por lo tanto, la resistencia a cicloserina no se explicó por mutaciones en la proteína Alr.

V.1.1.6. Resistencia a ácido paraaminosalicílico

En la resistencia a PAS, 9 (75%) de las 12 cepas resistentes presentaron al menos una mutación en ThyA y 3 cepas resistentes no presentaron ninguna mutación en ThyA. Las cepas resistentes presentaron alguna de las mutaciones L8Q, T202A y H207R, donde ninguna se encontró en el sitio de unión al cofactor MTHF (residuos 143-172) o en el sitio de unión al sustrato dUMP (residuo 127) (15).

De las 3 mutaciones en ThyA, las mutaciones L8Q y H207R se encontraron en una mayor proporción de cepas resistentes, las cuales fueron previamente reportadas en la resistencia a PAS (117). Por otro lado, la mutación T202A se encontró en una mayor proporción de cepas sensibles (Anexo 10). Se seleccionaron las mutaciones L8Q y H207R para su evaluación (Tabla 5).

V.1.2 Mutaciones obtenidas a partir de la base de datos pública PATRIC

La recopilación de mutaciones a partir de la base de datos pública PATRIC fueron presentadas en el Anexo *11*. En cepas resistentes a ciprofloxacina, se encontraron las mutaciones A90V, D94H y D94A en GyrA y A504T y K526Q en GyrB, donde la mayoría fue reportada previamente (93,95), a excepción de la mutación nueva K526Q. En la resistencia a kanamicina, se encontraron las mutaciones nuevas A1398G y T14G en el gen *rrs*, D132E y W45R en GidB y T292P en IdsA2. En la resistencia cruzada
a kanamicina y capreomicina, se encontraron mutaciones nuevas en GidB, WhiB7, IdsA2, TlyA, y en *rrs*, mientras que las mutaciones R37G y S83G en la proteína Eis fueron reportadas previamente solo en cepas resistentes a kanamicina (123). Cabe resaltar que los genes *eis* y *whiB7* fueron ampliamente reportados en la resistencia a kanamicina (104,124) a diferencia del gen *idsA2* (55,103). En la resistencia a cicloserina, se encontraron mutaciones nuevas en Alr y en CycA. En la resistencia a ácido paraaminosalicílico, se encontraron 6 mutaciones nuevas en ThyA.

V.1.3 Mutaciones reportadas en la literatura

Se encontraron 14 mutaciones en GyrA reportadas en la literatura en cepas resistentes a fluoroquinolonas en Perú y 47 mutaciones reportadas en cepas resistentes a fluoroquinolonas en el resto del mundo (Anexo 12). Entre las 14 mutaciones reportadas en cepas peruanas, 5 mutaciones (A90V, D94G, D94N, D94H y D94A) fueron encontradas en el presente estudio. Entre las 47 mutaciones reportadas en el resto del mundo, 11 mutaciones (A90V, D94G, D94N, D947, G88A, G88C, H70R, F94A, A288D y R292G) fueron encontradas en cepas peruanas. Se reportó que 9 mutaciones (A74S, G88C, G88A, A90V, D94G, D94N, D94H, D94A y L96P) fueron evaluadas mediante mutagénesis, la cual confirma la capacidad de estas mutaciones de generar resistencia, mientras que 2 mutaciones (T80A y A384V) fueron descartadas como mutaciones asociadas a resistencia a fluoroquinolonas (38,95,125–127). Asimismo, se encontraron 10 mutaciones reportadas en GyrB en la literatura en cepas resistentes a fluoroquinolonas en Perú y 26 mutaciones reportadas en cepas resistentes a fluoroquinolonas en el resto del mundo. Entre las 26 mutaciones reportadas en el resto del mundo, 6 mutaciones

(V301L, N499D, E501D, T500A, N499I y T500P) fueron reportadas en cepas peruanas y también la mutación V301L fue encontrada en el presente estudio. Se reportó que 13 mutaciones (K247N, R466C, D461N, D461H, N499D, N499S, N499T, T500N, T500P, E501V, E501D, A504V, T507M) fueron evaluadas mediante mutagénesis, la cual confirmó la capacidad de estas mutaciones de generar resistencia, mientras que 4 mutaciones (V301L, D461A, R446C y N499T) fueron descartadas como mutaciones asociadas a resistencia a fluoroquinolonas (38,95,125–127).

En la resistencia a inyectables de segunda línea, primero, se encontraron 2 mutaciones en GidB reportadas en la literatura en cepas resistentes a kanamicina en el resto del mundo (Anexo 13). Luego, se encontraron 6 mutaciones en TlyA reportadas en la literatura en cepas resistentes a capreomicina en Perú y 6 mutaciones en TlyA reportadas en cepas resistentes a capreomicina en el resto del mundo. Por último, se encontraron 5 mutaciones en GidB (Anexo 13) y 5 mutaciones en TlyA reportadas en cepas resistentes a kanamicina y capreomicina en el resto del mundo. Únicamente, la mutación G232D, reportada en cepas peruanas en la literatura (45) y encontrada en el presente estudio, fue confirmada como una mutación asociada a resistencia a capreomicina mediante mutagénesis (45).

Finalmente, se encontraron 25 mutaciones reportadas en la literatura en cepas resistentes a ácido paraaminosalicílico en el resto del mundo. De este grupo, la mutación H207R se encontró también presente en el presente estudio. Solo la mutación T202A fue evaluada mediante mutagénesis, sin embargo, no fue asociada a resistencia a ácido paraaminosalicílico (84).

57

Se evaluaron únicamente las mutaciones en GyrA, GyrB, GidB, TlyA y ThyA, porque, en las otras moléculas (*rrs*, Alr y Rv3728), se reportaron poca cantidad de mutaciones en la búsqueda externa a partir de la base de datos de PATRIC (AnexO 11) y la literatura (Anexo 12 y Anexo 13).

V.2. Comparación de las distribuciones de mutaciones de Perú y del resto del mundo

V.2.1 Proteína GyrA

En el análisis de distribución de mutaciones, se realizó el conteo de mutaciones únicas en los dominios de estructura secundaria de GyrA (Anexo 14), debido a que las proteínas GyrB, GidB, TlyA y ThyA presentaron una baja cantidad de mutaciones en total (Tabla 6). La distribución de mutaciones a través de los dominios de estructura secundaria de GyrA de Perú se encontró visualmente englobada en la distribución de mutaciones reportadas en el resto del mundo, en consecuencia, se realizó la prueba de signed-rank y la prueba de correlación de Spearman a partir de una normalización de las frecuencias de mutaciones únicas por cada dominio de estructura secundaria. La prueba de signed-rank no rechazó la hipótesis nula de la similitud de las frecuencias de mutaciones únicas normalizadas para cada dominio de estructura secundaria en cepas resistentes al menos a ciprofloxacina para Perú respecto a las mutaciones en cepas resistentes al menos a ciprofloxacina para el resto del mundo (p=0.7343>0.05) (Tabla 7). Así también la prueba de signed-rank no rechazó la hipótesis nula de la similitud de las frecuencias de mutaciones únicas normalizadas para cada dominio de estructura secundaria en cepas resistentes al menos a ciprofloxacina para Perú respecto a las mutaciones en cepas resistentes a fluoroquinolonas para el resto del mundo (p=0.1063>0.05)

(Tabla 7). Finalmente, la prueba de *signed-rank* no rechazó la hipótesis nula de la similitud de las frecuencias de mutaciones únicas normalizadas para cada dominio de estructura secundaria en cepas resistentes a fluoroquinolonas para Perú respecto a las mutaciones en cepas resistentes al menos a fluoroquinolonas para el resto del mundo (p=0.3077>0.05) (Tabla 7). Por lo tanto, no se encontraron diferencias significativas entre la distribución de mutaciones encontradas en Perú respecto a las reportadas en el resto del mundo. Se sugiere una distribución de mutaciones similar y universal presente en Perú como para el resto del mundo para las mutaciones en GyrA en la resistencia a fluoroquinolonas.

La prueba de correlación de Spearman rechazó la hipótesis nula de que las distribuciones de mutaciones sean independientes, al comparar la distribución de mutaciones en cepas resistentes al menos a ciprofloxacina (p= 0.0025) o mutaciones en cepas resistentes a fluoroquinolonas (p= 0.041) de Perú respecto a aquella reportada en cepas resistentes a fluoroquinolonas en el resto del mundo (Tabla 7 y Tabla 8). Se sugiere que las distribuciones de mutaciones estarían relacionadas y que la excepción en los resultados que muestra distribuciones independientes se observa cuando se compara la distribución de mutaciones en cepas resistentes al menos a ciprofloxacina de Perú respecto a su correspondiente del resto del mundo (p =0.0793). Esto podría explicarse por la falta de publicación de reportes sobre mutaciones o la falta de uso de ciprofloxacina respecto a otras fluoroquinolonas en el resto del mundo.

 Tabla 6. Resultado de la identificación de mutaciones a partir de las bases de datos secundarias y

 la búsqueda externa de mutaciones para Perú y el resto del mundo. Cada cantidad de mutaciones

 no considera las repeticiones entre columnas.

Grupo	Gen/droga	# Total de M	#M de Perú	#M reportadas en la literatura
Fluoroquinolonas	Fluoroquinolonas			
	GyrA	63	16	47
	GyrB	32		
Inyectables de	Kanamicina			
segunda línea	GidB	8		
	Capreomicina			
	TlyA	14		
	Kanamicina-			
	capreomicina			
	GidB	8		
	TlyA	9		
Droga de segunda	PAS			
línea complementaria	ThyA	32		

#M: Número de mutaciones

Tabla 7. Comparación de las distribuciones de mutaciones únicas en cepas resistentes al menos a

ciprofloxacina en Perú y del resto del mundo.

	Mutaciones asociadas a la resistencia al menos a ciprofloxacina	Mutaciones asociadas a la resistencia a fluoroquinolona	
Prueba de signed-rank	0.7343	0.1063	
Prueba de Spearman	0.0793 (rho= 0.2246)	0.0025 (rho =0.3773)	

rho= coeficiente de correlación rho de Spearman.

 Tabla 8. Comparación de las distribuciones de mutaciones únicas en cepas resistentes a

 fluoroquinolonas en Perú y del resto del mundo.

	Mutaciones asociadas a la resistencia a fluoroquinolona			
Prueba de signed-rank	0.3077			
Prueba de Spearman	0.0041 (rho=0.3599)			
rho= coeficiente de correlación rho de Spearman.				

V.3. Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia y estructura de la proteína codificada

V.3.1 Proteína GyrA

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de GyrA

Se analizó la acumulación de mutaciones únicas en los sitios funcionales de las proteínas a lo largo de la secuencia y en la estructura.

En la resistencia a fluoroquinolonas, en la secuencia de GyrA, una mayor proporción de mutaciones se encontró en 4 regiones específicas (regiones *hotspots*) de la proteína al comparar la distribución de mutaciones peruanas respecto al resto del mundo (Figura 11). Entre las 16 mutaciones peruanas, 8 mutaciones (50%) se acumularon en la región α 4 y 10 mutaciones (63%) en la región α 3-*loop*- α 4-*loop*- β 2 (región QRDR). También se encontraron mutaciones fuera de esta región: 1 mutación (6%) se encontró en la región α 2-*loop*, que corresponde con el extremo proximal del QRDR; y 4 mutaciones (25%) en la región β 11- α 11-*loop*, que corresponde a una sección de la región Torre. Una mutación restante se ubicó en el dominio β 5.

Entre las 47 mutaciones únicas reportadas en el resto del mundo, 20 mutaciones (43%) se acumularon en la región $\alpha 4$ y 28 mutaciones (60%) en la región $\alpha 3$ -*loop*- $\alpha 4$ -*loop*- $\beta 2$ (región QRDR). También se encontraron mutaciones fuera de esta región: se acumularon 5 mutaciones (11%) en la región $\alpha 2$ -*loop*, que corresponde con el extremo proximal del QRDR; 4 mutaciones (9%) en el *loop* entre $\beta 2$ - $\beta 3$, que se encontró circundante al sitio catalítico de unión al ADN; y 2 mutaciones (4%) en la región $\beta 11$ - $\alpha 11$ -*loop*, que corresponde a una sección de la región Torre. Las 8

mutaciones restantes se localizaron en los *loops* entre α 7 y β 4 y entre β 5 y α 9 y los dominios α 1 y α 10 y en la región C-terminal de GyrA.

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de GyrA

Las mutaciones únicas de GyrA se encontraron en 5 regiones *hotspots* en la estructura tridimensional, las cuales confirmó 4 regiones *hotspots* encontrados en la secuencia (Figura 12): 28 mutaciones en el QRDR, 4 mutaciones (R68G, S69T, H70R, H52Q) en el extremo proximal del QRDR, 4 mutaciones (A126R, A126E, M127K, P123S) en el sitio catalítico de unión al ADN, 4 mutaciones (A297D, R292G, T267I, A288D) en la región Torre. Asimismo, se encontró una región *hotspot* de 4 mutaciones (D151T, P163A, V165A y A204V) alrededor de la región de dos *loops* conservados de GyrA y GyrB, la cual fue visualizada exclusivamente en la estructura. Una mutación (E21H) se encontró fuera de estas regiones. La región de QRDR presentó la mayor acumulación de mutaciones. Las mutaciones V742L, P621L, D756E, G809 no se consideraron en el análisis estructural, porque no está disponible una estructura cristal y la mutación Q60R no se pudo ubicar en la estructura.

Figura 11. Distribución de mutaciones en la secuencia de GyrA en cepas de *M. tuberculosis* resistentes a fluoroquinolonas. En la parte superior, se encontraron las mutaciones del presente estudio (\bigstar) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas para el resto del mundo. Se muestra los dominios de la estructura secundaria (hojas plegadas β y hélices alfa) en una disposición lineal, además, se indica el QRDR, sitios funcionales (barra negra) y regiones estructurales según Piton et al. (39). Los superíndices de las mutaciones indica la droga evaluada en la resistencia a ofloxacina (O), ciprofloxacina (C), moxifloxacina (M), levofloxacina (L) y gatifloxacina (G). Mutaciones obtenidas de la base de datos PATRIC (\bigstar), mutaciones asociadas a resistencia (azul) y no asociada a resistencia (rojo) mediante mutagénesis (60,95,121,125,128,129), mutaciones en conjunto con una mutación de otra proteína (\checkmark), mutaciones con alguno de los polimorfismos E21Q, G247S, S95T, G668D (\bullet) y mutaciones en cepas sensibles (verde).

Figura 12. Distribución de mutaciones fuera del QRDR en GyrA. **A**. Estructura terciaria de GyrA (color azul verde, PDB: 5BTC). **B**. Lateral izquierdo de GyrA. Las mutaciones (en forma de esfera, color según la región estructural al que pertenecen con base en la Figura 11) fueron señaladas. **C**. Centro de masa del sitio de unión a la droga (esfera roja) y centro de masa del sitio catalítico de unión al ADN (color fucsia). El sitio de unión a la droga y el sitio catalítico de unión al ADN (color verde limón) fueron indicados. **D**. Región QRDR (color limón) en GyrA y GyrB (color magenta, PDB: 6GAV). **E**. Región de los dos *loops* conservados (color limón) de GyrA y GyrB.

V.3.2 Proteína GyrB

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de GyrB

En la resistencia a fluoroquinolonas, la distribución de mutaciones en GyrB presentó una mayor proporción de mutaciones en tres regiones específicas (Figura 13). De las 32 mutaciones únicas, 12 mutaciones (38%) (D461N, D461H, D472V, G470C, N499S, N499D, N499I, T500P, T500N, T500A, E501V y E501D) se acumularon en la región *loop*- β 2*-loop*-sección de α 2, que representó el QRDR de GyrB desde el residuo 461 hasta 501 (58). Las otras mutaciones se encontraron fuera del QRDR en dos regiones: 9 mutaciones (28%) (A504T, A504V, G510A, T507M, G512R, D515G, G520A, K526Q y R523H) en la región sección de α2*loop*-β3, que correspondió con el extremo derecho proximal del QRDR de GyrB; y 3 mutaciones (9%) (R446L, R446H y S447F) en el extremo proximal izquierdo del QRDR de GyrB. Las 8 mutaciones restantes se encontraron también fuera del QRDR dispersas a lo largo de la secuencia: en la tropima bisagra (tropim hinge), en la segunda sección de la tropima globular, en la ATPasa-GHKL, en la ATPasa-Transductor y en el extremo del *loop* conservado de GyrB. Se excluyeron las mutaciones R466C, D461A y N499T del análisis, debido a que no fueron asociadas a resistencia mediante mutagénesis en un estudio previo (95).

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de GyrB

Las mutaciones de las regiones *hotspots* de GyrB definidos previamente en la secuencia, tuvieron una disposición diferente en la estructura. Se identificaron 2 regiones que acumulan mutaciones en la estructura y no 3 regiones como

previamente se describió en la gráfica lineal (Figura 13). La primera región hotspot, ubicada estructuralmente alrededor del sitio de unión a la droga, está conformada por 10 (D461N, D461H, N499S, N499D, N499I, T500P, T500N, T500A, E501V y E501D) de las 12 mutaciones de la región QRDR y 2 (A504T y A504V) de las 9 mutaciones de la región extremo derecho proximal del QRDR, las cuales se describieron previamente en tales regiones en la gráfica lineal. Las mutaciones de la región hotspot lejos del sitio de unión a la droga correspondieron a 2 (G470C y D472V) de las 12 mutaciones del QRDR, 7 (T507M, G510A, G512R, D515G, G520A, R523H y R526Q) de las 9 mutaciones del extremo derecho proximal del QRDR, 3 mutaciones (R446H, R446L, S447F) del extremo izquierdo proximal del QRDR y una mutación adicional (R631S), las cuales se describieron previamente en tales regiones en la gráfica lineal. Las 7 mutaciones restantes se encontraron fuera de ambas regiones hotspots. Por lo tanto, en la estructura, se identificó una región hotspot circundante al QRDR conformada por 12 (44%) mutaciones únicas (D461N, D461H, N499T, N499D, N499S, N499I, T500P, T500N, T500A, E501D. E501V, A504T, A504V) y una región hotspot lejos del QBP conformada por 13 (48%) mutaciones únicas (G470C y D472V, T507M, G510A, G512R, D515G, G520A, R523H y R526Q, R446H, R446L, S447F y R631S), donde esta última región está conformada por la mayoría de las mutaciones de los extremos proximales del QRDR. Las otras 7 mutaciones se encontraron dispersas en la proteína.

Figura 13. Distribución de mutaciones en la secuencia y estructura de GyrB en cepas de *M. tuberculosis* resistentes a fluoroquinolonas de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de GyrB. Se indica el QRDR, los sitios funcionales en GyrB (barra negra) y las regiones estructurales según Piton et al. (39). En la parte superior, se encontraron las mutaciones del presente estudio (\bigstar) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas por el resto del mundo. Los superíndices de las mutaciones indica la droga evaluada en la resistencia a ofloxacina (O), ciprofloxacina (C), moxifloxacina (M), levofloxacina (L) y gatifloxacina (G). Mutaciones obtenidas de la base de datos pública PATRIC (\bigstar), mutaciones asociadas a resistencia (azul) y no asociadas resistencia (rojo) mediante mutagénesis (38,95,125–127), mutaciones en conjunto con una mutación de otra proteína (\checkmark) y mutaciones en cepas sensibles (verde). **B**. Distribución de mutaciones en la estructura terciaria de GyrB. **B1.** Estructura terciaria de GyrB (color magenta, PDB: 6GAV). **B2.** Reverso de GyrB. Las mutaciones (en forma de esfera, color de la región estructural al que pertenecen según la gráfica lineal en la Figura 13A) fueron señaladas. El QRDR y el *loop* conservado de GyrB (color limón) fueron indicados.

R6315

D472V

G470Ć

K

K247N

V.3.3 Proteína GidB

Resistencia a kanamicina

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de GidB

La distribución de mutaciones en GidB en cepas resistentes a kanamicina reveló que las 8 mutaciones se encontraron en cantidades similares en diferentes regiones del gen (Figura 14): 3 mutaciones (R39fs, W45R y R47W) se encontraron en la región α 3-*loop*, 1 mutación (I114T) en el dominio β 3 y 2 mutaciones (D132E y T146K) en la región β 4-*loop*- α 8, donde ninguna de estas tres regiones corresponden con sitios de unión a SAM; mientras que 2 mutaciones (S70R y G73R) se encontraron en la región *loop* β 1- α 5, que incluyó a uno de los sitios de unión a SAM.

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de GidB

Se identificaron los sitios de unión a SAM en la estructura de la proteína GidB. La región *hotspot* de 3 mutaciones (W45R, R47W y R39fs), ubicada en la región α 3-*loop*, se encontró lejos del sitio de unión a SAM y fue confirmada en la secuencia y estructura (Figura 14). Por otro lado, la distribución dispersa de ciertas mutaciones fue agrupada levemente en la distribución estructural, debido a que una región *hotspot* agrupó 3 mutaciones, ubicadas en el dominio β 3 (I114T) y en la región *loop* β 1- α 5 (G73R, S70R), la cual fue circundante al sitio de unión a SAM en la estructura (Figura 14). Las dos mutaciones restantes (D132E y T146K), ubicadas en la región β 4-*loop*- α 8, se encontraron distantes al sitio de unión a SAM.

S70R, I114T) circundante al sitio de unión a SAM y una región *hotspot* de 3 (38%) mutaciones (W45R, R47W y R39fs) lejos del sitio de unión a SAM.

Resistencia cruzada a kanamicina y capreomicina

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de GidB

Las 8 mutaciones se encontraron en distintas regiones de la proteína GidB (Figura 14): 3 mutaciones (G34fs, L35R, L44Q) en la región *loop*- α 3, 3 mutaciones (G73R, V77A y D85G) en la región *loop*- α 5-*loop*, 1 mutación (R96C) en el dominio α 6 y 1 mutación (V124A) en el dominio α 7, donde la región *loop*- α 5-*loop* abarca uno de los sitios de unión a SAM.

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de GidB

Las mutaciones de las regiones *hotspots* de GidB definidas previamente en la secuencia, tuvieron una disposición diferente en la estructura. Se identificó una región que acumula mutaciones en la estructura y no 2 regiones como previamente se describió en la gráfica lineal. Se identificó una región *hotspot* circundante al sitio de unión a SAM, debido a que las mutaciones de la región *loop*- α 3 (L35R, G34fs), de la región *loop*- α 5-*loop* (G73R, V77A), del dominio α 6 (R96C) y del dominio α 7 (V124A) se agruparon alrededor del sitio de unión a SAM. Las dos mutaciones restantes (L44Q y D85G) se encontraron dispersas y distantes del sitio de unión a SAM en la estructura. Por lo tanto, se identificó una región *hotspot* de 6 (75%) mutaciones (L35R, G34fs, G73R, V77A, R96C, V124A) circundante al sitio de unión a SAM (Figura 14).

Figura 14. Distribución de mutaciones en la secuencia y estructura de GidB en cepas de *M. tuberculosis* resistentes a kanamicina, capreomicina y a ambas drogas de Perú y del resto del mundo. A. Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de GidB. Se indica los sitios de unión a SAM (barra negra) según Verma et al. (116). En la parte superior, se encontraron las mutaciones del presente estudio (+); y en la parte inferior, las mutaciones reportadas en el resto del mundo. Los superíndices de las mutaciones indican la droga evaluada en la resistencia a kanamicina (K), capreomicina (C) y ambas drogas (K-C). Mutaciones obtenidas de la base de datos pública PATRIC (\blacktriangle), mutaciones asociadas a resistencia mediante mutagénesis (azul) (130), mutaciones en conjunto con una mutación de otra proteína (**C**), mutaciones con cambio de marco de lectura (fs) y mutaciones en cepas sensibles (verde). **B.** Centro de masa del sitio de unión a SAM (color rojo). El sitio de unión a SAM (color limón) fue indicado. **C.** Distribución de mutaciones en la estructura terciaria de GidB. **C1.** Estructura terciaria de GidB (color verde pálido, PDB: 7CFE). **C2.** Reverso de la estructura terciaria de GidB. Las mutaciones (en forma de esfera) en la resistencia a kanamicina (color rojo), capreomicina (color anaranjado) y kanamicina-capreomicina (color marrón) fueron señaladas.

V.3.4 Proteína TlyA

Resistencia a capreomicina

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de TlyA

Una mayor proporción de mutaciones se acumularon en una región específica de la proteína TlyA (Figura 15). Entre las 14 mutaciones, 8 mutaciones (57%) se acumularon en la región *loop*- α 5-*loop*- β 6-*loop*- β 7-*loop*- α 6, que incluyó a dos (Lys182 / Glu238) de los cuatro sitios de la tétrada catalítica. El resto de mutaciones se encontraron en diferentes dominios de la proteína: 2 mutaciones se encontraron en el *loop* entre β 3 y β 4, 1 mutación en el dominio β 4, 1 mutación en el *loop* entre β 2 y α 3, 1 mutación en el dominio β 1 y 1 mutación en la región N-terminal, donde ninguno abarca los sitios de unión a SAM (residuos 90-94/60-63).

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de TlyA

La región *hotspot* ubicada en la región *loop-* α 5*-loop-* β 6*-loop-* β 7*-loop-* α 6, que incluyó a dos sitios (Lys182 / Glu238) de la tétrada catalítica, se agrupó diferente en la estructura. Las 4 mutaciones puntuales (G232D, S228R, N236K, G196E) se agruparon en una región *hotspot* estructuralmente circundante a la tétrada catalítica, mientras que las 4 mutaciones con cambio de marco de lectura (V198fs, L209dup, ins218L, S252fs) se encontraron dispersas y distantes de este sitio catalítico. Las otras 6 mutaciones restantes (R133fs, L139fs, L150P, L118R, C86fs, R18stop) se encontraron distantes a la tétrada catalítica, sin embargo, la mutación L118R se encontró alrededor del sitio de unión a SAM (90-94/60-63). Consecuentemente,

existe una región *hotspot* de 4 (29%) mutaciones puntuales (G232D, S228R, N236K, G196E) estructuralmente circundante a la tétrada catalítica (Figura 15).

Resistencia cruzada a kanamicina y capreomicina

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de TlyA

Una mayor proporción de mutaciones se acumularon en una región específica de la proteína TlyA (Figura 15). Entre las 9 mutaciones únicas, 5 mutaciones (56%) se encontraron en la región *loop*- α 1-*loop*- β 1-*loop*- α 2- β 2, que abarcó los sitios de unión a SAM (60-63/ 90-94) y el sitio K69 de la tétrada catalítica. El resto de mutaciones se encontraron en distintos dominios de la proteína: 1 mutación en el *loop* entre β 3 y β 4, 1 mutación en el dominio β 5, 1 mutación en el dominio α 5 y 1 mutación en la región N terminal. En este análisis, no se consideró la mutación E75X y L160W.

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de TlyA

Todas las 5 mutaciones (S92fs, R60fs, H68fs, K69Q y A111fs) procedentes de la región *loop*- α 1-*loop*- β 1-*loop*- α 2- β 2 se encontraron estructuralmente circundantes al sitio de unión a SAM (S92fs, R60fs y A111fs) y a la tétrada catalítica (H68fs y K69Q), en consecuencia, esta región *hotspot* se confirma en la estructura tridimensional. Además, la mutación L180R se encontró estructuralmente alrededor del sitio de unión a SAM. Al contrario, tres mutaciones restantes (Q202fs, G145S y A17fs) se encontraron dispersas y distantes de estos sitios catalíticos. Esto nos sugiere que, existe una región *hotspot* de 6 (67%) mutaciones (S92fs, R60fs, H68fs,

K69Q, A111fs y L180R) estructuralmente circundante a los sitios de unión a SAM

(60-63/90-94) y a la tétrada catalítica (Figura 15).

Figura 15. Distribución de mutaciones en la secuencia y estructura de TlyA en cepas de *M. tuberculosis* resistentes a kanamicina, capreomicina y a ambas drogas de Perú y del resto del mundo. **A.** Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de TlyA. Se indica el sitio de unión a SAM y la tétrada catalítica (barra negra), así como las regiones estructurales según Witek et al. (49). En la parte superior, se encontraron las mutaciones del presente estudio (\bigstar) y de estudios peruanos (superíndice color morado); y en la parte inferior, las mutaciones reportadas en el resto del mundo. Los superíndices de las mutaciones indica la droga evaluada en la resistencia a kanamicina (K), capreomicina (C) y ambas drogas (K-C). Mutaciones obtenidas de la base de datos pública PATRIC (\blacktriangle), mutaciones con cambio del marco de lectura (fs) y mutaciones en conjunto con una mutación de otra proteína (\heartsuit). **B.** Centro de masa de la tétrada catalítica (color rojo) y centro de masa del sitio de unión a SAM (color fucsia). El sitio de unión a SAM y la tétrada catalítica (color limón) fueron indicados. **C.** Distribución de mutaciones en la estructura terciaria de TlyA (color azul cielo, PDB: 5KYG). **D.** Reverso de la estructura de TlyA. Las mutaciones (en forma de esfera) en la resistencia a kanamicina (color rojo), capreomicina (color anaranjado) y a kanamicina-capreomicina (color marrón) fueron indicadas.

V.3.5 Proteína ThyA

Identificación de regiones *hotspots* en la distribución de mutaciones en la secuencia de ThyA

En la resistencia a ácido paraaminosalicílico, una mayor proporción de mutaciones se acumularon en dos regiones específicas de la proteína ThyA (Figura 16). Entre las 32 mutaciones, 4 mutaciones (13%) (F152V, D169N, C161T, H147R) se encontraron en la región β 4-*loop*- β 5, que corresponde con el sitio de unión al cofactor MTHF (residuos 143-172); y 10 mutaciones (31%) (D81A, W83C, G91R, H75Q, Q97R, V77F, H75N, W98stop, W83stop y G76stop) se encontraron en la región *loop*- α 4-*loop*- α 5, que no corresponde con ninguna región funcional de la proteína. El resto de mutaciones se encontraron en cantidades similares en 13 distintas regiones de la proteína.

Identificación de regiones *hotspots* en la distribución de mutaciones en la estructura de ThyA

Las mutaciones de la región *hotspot* procedentes de la región *loop*-α4-*loop*-α5 se encontraron estructuralmente lejos del sitio de unión al cofactor MTHF y del sitio de unión al sustrato dUMP. Asimismo, las 4 mutaciones de la región *hotspot* del sitio de unión al cofactor MTHF se encontró en este sitio activo. Las 18 mutaciones restantes se encontraron dispersas a lo largo de la proteína ThyA. Por lo tanto, existe una región *hotspot* de 4 (13%) mutaciones (H147R, F152V, C161T, D169N) asociada al sitio de unión al cofactor MTHF y una región *hotspot* de 10 (31%) mutaciones (D81A, W83C, G91R, H75Q, Q97R, V77F, H75N, W98stop, W83stop y G76stop) lejos del sitio de unión al cofactor MTHF y del sitio de unión al sustrato dUMP (Figura 16). **Figura 16.** Distribución de mutaciones en la secuencia y estructura de ThyA en cepas de *M. tuberculosis* resistentes a PAS de Perú y del resto del mundo. **A.** Gráfica lineal de los dominios de estructura secundaria (hojas β plegadas y alfa α hélices) de ThyA. Se indica el sitio de unión al sustrato dUMP y cofactor MTHF (barra negra) según Pandey et al. (15). En la parte superior, se encontraron las mutaciones del presente estudio (+); y en la parte inferior, las mutaciones reportadas en el resto del mundo. Mutaciones obtenidas de la base de datos pública PATRIC (**A**). **B.** Centro de masa del sitio de unión al sustrato dUMP (color fucsia) y cofactor MTHF (color rojo). Los sitios de unión sustrato dUMP y cofactor MTHF (color limón) fueron indicados. **C.** Distribución de mutaciones en la estructura terciaria de ThyA. **C1.** Estructura terciaria de ThyA (color azul claro, PDB: 3QJ7). **C2.** Reverso de la estructura de ThyA. Las mutaciones (en forma de esfera) procedentes de Perú (color fucsia) y del resto del mundo (color verde) fueron indicadas.

V.4. Evaluación de mutaciones de regiones *hotspots* cerca del sitio de unión a la droga o el sitio activo

Los resultados de las mutaciones de regiones *hotspots* asociadas a la presión de selección farmacológica se muestra en la Tabla 9.

V.4.1 Proteína GyrA

En la resistencia a fluoroquinolonas, se encontró que la mayoría de las mutaciones (A74S, D84G, D89N, I92M, D94A, D94N, D94G, D94H, D94Y, D94V, D94T, D94S, L96P, R98L, P102H, L105R, D111N), ubicadas en el QRDR, presentaron distancias al centro de masa del sitio de unión a la droga mayores a 12 Å, sin embargo, unas cuantas mutaciones (G88A, G88R, G88C, A90V, A90T, A90L, S91P, S91A, S91L) localizadas en este sitio funcional se encontraron por debajo del punto de corte de 12 Å (Figura 17).

Además, se determinó que las mutaciones más cercanas al sitio de unión a la droga (QBP) ocurren con mayor frecuencia en el QRDR (D (distancia): 9.7-29.7 Å) y en menor grado en el sitio catalítico de unión al ADN (D: 14.6-19.5 Å) y en el extremo proximal del QRDR (D: 20.1-36.4 Å), las cuales en su mayoría presentaron una distancia al centro de masa del QBP mayor al punto de corte de 12 Å, mientras que las mutaciones lejanas al QBP se localizan en los dos *loops* conservados de GyrA y GyrB (D: 27.5-42.9 Å) y en una sección de la región Torre (33.9-49.9 Å) (Figura 17).

Considerando las regiones funcionales descritas en GyrA (39), se determinaron las distancias al centro de masa de dos sitios funcionales adicionales: sitio catalítico de unión al ADN y la región de los dos *loops* conservados de GyrA y GyrB. Las mutaciones de la región *hotspot* circundante al sitio catalítico de unión al ADN (2.9-

10.8 Å) presentaron distancias al centro de masa de este sitio funcional menores a 12 Å. Por otro lado, las mutaciones alrededor de la región funcional de los dos *loops* conservados de GyrA y GyrB (D: 19.5-28.7 Å) presentaron distancias al centro de masa de este sitio funcional mayores a 12 Å. (Figura 17).

Figura 17. Distancia mínima de las mutaciones en GyrA. Se muestra las distancias de las mutaciones de las regiones *hotspots* encontrados en GyrA y de una mutación fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

V.4.2 Proteína GyrB

En la resistencia a fluoroquinolonas, se determinó que todas las mutaciones (D461H, D461N, N499S, N499D, N499I, T500P, T500N, T500A, E501V y E501D, A504V y A504T) de la región *hotspot* circundante al QRDR (D: 6.8-11.7 Å) presentaron distancias al centro de masa del sitio de unión a la droga menores a 12 Å. Por otro lado, las mutaciones de la región *hotspot* lejos del QBP (D: 18.4-31.1 Å) presentaron distancias mayores al punto de corte (Figura 18).

Figura 18. Distancia mínima de las mutaciones en GyrB. Se muestra las distancias de las mutaciones de las regiones *hotspots* encontrados en GyrB y de las mutaciones fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

V.4.3 Proteína GidB

Resistencia a kanamicina

En el análisis de distancias, todas las mutaciones de la región *hotspot* circundante al sitio de unión a SAM (D: 2.2-9.7 Å) presentaron distancias al centro de masa del sitio de unión a SAM menores a 12 Å, mientras que todas las mutaciones de la región *hotspot* lejos del sitio de unión a SAM (14.2-18.2 Å) presentaron distancias mayores al punto de corte (Figura 19).

Figura 19. Distancia mínima de las mutaciones en GidB. Se muestra las distancias de las mutaciones de las regiones *hotspots* encontrados en GidB y de las mutaciones fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

Resistencia cruzada a kanamicina y capreomicina

En el análisis de distancias, la mayoría de las mutaciones (G73R, V77A, L35R, R96C) de la región *hotspot* circundante al sitio de unión a SAM (D: 6.1-10.4 Å) presentaron distancias menores a 12 Å, salvo por las mutaciones G34fs y V124A (D: 13.5-13.6 Å) (Figura 20).

Figura 20. Distancia mínima de las mutaciones en GidB. Se muestra las distancias de las mutaciones de las regiones *hotspots* encontrados en GidB y de las mutaciones fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

V.4.4 Proteína TlyA

Resistencia a capreomicina

En el análisis de distancias, se encontró que la mayoría de las mutaciones (G232D,

S228R, N236K) de la región hotspot circundante a la tétrada catalítica (D: 3.7-5.7

Å) presentaron distancias menores a 12 Å, salvo por la mutación G196E (D: 13.7

Å). De forma excepcional, la mutación L118R, la cual no pertenece a un hotspot,

se encontró cerca del sitio de unión a SAM con una distancia de 7.8 Å (Figura 21).

Figura 21. Distancia mínima de las mutaciones en TlyA. Se muestra las distancias de las mutaciones de la región *hotspot* encontrado en TlyA y de las mutaciones fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

Resistencia cruzada a kanamicina y capreomicina

Evaluando las dos regiones funcionales descritas en TlyA (49), se determinaron mutaciones cercanas a la tétrada catalítica y al sitio de unión a SAM asociadas a resistencia cruzada a kanamicina y capreomicina. La mayoría de las mutaciones (R60fs, H68fs, K69Q, S92fs y L180R) de la región *hotspot* circundante del sitio de unión a SAM (D: 7.1-10.8 Å) presentaron distancias al centro de masa del sitio de unión a SAM menores a 12 Å, salvo por la mutación A111fs (D: 13.3 Å). Al evaluar estas mismas mutaciones respecto al centro de masa de la tétrada catalítica, la mayoría de las mutaciones (H68fs, K69Q, S92fs, L180R) también presentaron distancias (D: 3.2-11.0 Å) menores a 12 Å, excepto por las mutaciones R60fs y A111fs (D: 15.9-19.7 Å). Cabe resaltar que las mutaciones puntuales K69Q (D: 3.2 Å) y L180R (D: 1.1 Å) se encontraron más cerca de la tétrada catalítica, mientras

que las mutaciones con cambio de marco de lectura R60fs (D: 10.8 Å), H68fs (D: 8.8 Å) y S92fs (D: 7.1 Å) se encontraron más cerca del sitio de unión a SAM (Figura 22).

Figura 22. Distancia mínima de las mutaciones en TlyA. Se muestra las distancias de las mutaciones de la región *hotspot* encontrado en TlyA y de las mutaciones fuera del *hotspot*. La línea roja indica el umbral de 12 Å.

V.4.5 Proteína ThyA

En la resistencia a ácido paraaminosalicílico, la mayoría de las mutaciones (H147R, F152V, C161T) de la región *hotspot* en el sitio de unión al cofactor MTHF (D: 5.7-9.8 Å) presentaron distancias al centro de masa del sitio de unión al cofactor MTHF menores a 12 Å, salvo por la mutación D169N (D: 14.2 Å). Además, ciertas mutaciones Y36C, P43S, L183V y T202A (D: 6.4-11.8 Å), que no se agruparon en un *hotspot*, también presentaron distancias menores a 12 Å. Por otro lado, la mayoría de las mutaciones (H75Q, H75N, G76stop, V77F, D81A, W83C, W83stop, G91R y Q97R) (14.2-26.0 Å) de la región *hotspot* lejos del sitio de unión al cofactor MTHF presentaron distancias mayores a 12 Å, sin embargo, la mutación W98stop (D: 8.8 Å) presentó una distancia menor a 12 Å. De forma excepcional, las mutaciones R126Q y F152V (D: 4.8 Å y 10.9 Å) se encontraron cerca del sitio de unión al sustrato dUMP (Figura 23).

Figura 23. Distancia mínima de las mutaciones en ThyA. Se muestra las distancias de las mutaciones de las regiones *hotspots* encontrados en ThyA y de las mutaciones fuera de las regiones *hotspots*. La línea roja indica el umbral de 12 Å.

Grupo	Gen/droga	#Regiones	Regiones hotspots	Presión de
		hotspots		selección
<u></u>				farmacológica
Fluoroquinolonas	Fluoroquinolonas	_	• Región <i>hotspot</i> en el	No*
	GyrA	5	QRDR de GyrA	No
			circundante al sitio	INO
			catalítico de unión al ADN	
			• Región hotspot en el	No
			extremo proximal	
			izquierdo del QRDR de	
			• Región hotspot	No
			circundante a los dos <i>loops</i>	
			conservados de GyrA y	
			GyrB	No
			• Region <i>hotspot</i> en una sección de la región Torre	INO
			section de la region Torre	
	GyrB	2	• Región hotspot	Sí
			circundante al QRDR de	N
			GyrB	No
			Region <i>notspot</i> lejos del OBP	
Inyectables de	Kanamicina		• Región hotspot	Sí*
segunda línea	GidB	2	circundante al sitio de	
			union a SAM • Pagión hatspot laios del	Ne
			sitio de unión a SAM	NO
	Capreomicina		Región hotspot	Sí
	TlyA	1	catalítica	
	Kanamicina-capre	omicina		
	GidB	1	Región hotspot	Sí*
			circundante al sitio de	
			union a SAM	
	TlyA	1	• Región hotspot	Sí*
			circundante al sitio de	
			union a SAM	
Droga de	PAS		• Región hotspot lejos del	No
segunda línea	ThyA	2	sitio de unión al cofactor	
complementaria	-		MTHF	Sí
			Region <i>hotspot</i> en el sitio de unión al cofactor	
			MTHF	

Tabla 9. Resultados de las regiones *hotspots* encontrados en GyrA, GyrB, GidB, TlyA y ThyA y su asociación a la presión de selección farmacológica para cada droga.

*Estos resultados no están soportados por la literatura.

VI. Discusión

Las mutaciones asociadas a resistencia a fluoroquinolonas e inyectables de segunda línea, que generan la mayor prevalencia de resistencia en este grupo (1), son conocidas y ampliamente reportadas (13). Sin embargo, no se han realizado estudios para conocer si la distribución de mutaciones asociadas a resistencia a drogas de segunda línea en Perú sigue un patrón conservado a nivel global. Por ello, este es el primer estudio que determinó y comparó la distribución de mutaciones en proteínas asociadas a resistencia a drogas de segunda línea en *M. tuberculosis* de Perú respecto al resto del mundo, lo cual permitió identificar regiones *hotspots* de mutaciones en la secuencia y estructura de la proteína codificada y determinar si la presión de selección farmacológica es uniforme (19–21).

Comparación de la distribución de mutaciones de Perú respecto al resto del mundo

En la resistencia a fluoroquinolonas, se conoce que el 64-85% de cepas con fenotipo resistente a fluoroquinolonas presentaron mutaciones dentro de la región determinante de resistencia a quinolonas (QRDR) de GyrA (59,81), donde las mutaciones A90V y D94N en el QRDR están asociadas con el bajo y alto nivel de resistencia (82,128,129), respectivamente. Sin embargo, la variabilidad del nivel de resistencia no es conocida para el resto de mutaciones de GyrA. En el presente estudio, las mutaciones A90V y D94N fueron encontradas en cepas sensibles y resistentes. Se demostró que factores como el tipo de fluoroquinolona y el entorno de la cepa afectaron el nivel de resistencia (121). Por todo ello, con el fin de tener un panorama amplio de las mutaciones que dirigen los mecanismos de resistencia, se determinó y comparó la distribución de mutaciones en cepas resistentes a

fluoroquinolonas de Perú respecto al resto del mundo. En nuestro estudio, la distribución de mutaciones de Perú se encontró englobada en la distribución de mutaciones reportadas para el resto del mundo. También nuestro análisis estadístico nos sugiere una similitud de las distribuciones de mutaciones únicas de Perú y del resto del mundo, al comparar cada dominio de estructura secundaria, porque no se encontraron diferencias significativas (p > 0.05). Además, las distribuciones de mutaciones de Perú y el resto del mundo presentaron regiones *hotspots* idénticas en su mayoría. Por lo tanto, existe un patrón conservado de mutaciones en GyrA a nivel global.

Cabe resaltar que ninguna de las mutaciones de la región *hotspot* circundante al sitio catalítico de unión al ADN en GyrA se encontró en Perú y el resultado estadístico indicó que no existió diferencias significativas entre la distribución de mutaciones de Perú respecto al resto del mundo. Por ello, es posible que una región *hotspot* necesite ser definida por más de 4 mutaciones para que sea significativa. Teniendo en cuenta lo anterior, considerando que las mutaciones en GyrA de mayor prevalencia en la resistencia fluoroquinolonas (D94G: 21-32% y A90V: 13-20%) fueron reportadas en la región QRDR (14), donde se encontró localizada la región *hotspot* principal de GyrA, es posible que se necesite más de 4 mutaciones para que una mutación de una región *hotspot* sea prevalente en la población.

La distribución de mutaciones se realizó con mutaciones reportadas en cepas resistentes. Una situación ideal es evaluar mutaciones asociadas a resistencia con base en una prueba de mutagénesis (95), porque las cepas resistentes evaluadas pueden estar acumulando mecanismos de resistencia no determinados, que son un sesgo al trabajar con mutaciones reportadas. Para disminuir el sesgo, las mutaciones

reportadas no asociadas a resistencia sobre la base de previos estudios de mutagénesis, se separaron del conjunto de mutaciones con la finalidad de evaluar mutaciones potencialmente resistentes.

Por otro lado, se destaca que 7 (32%) de las 22 cepas resistentes a ciprofloxacina no presentaron mutaciones en los GyrA, GyrB y MfpA, a pesar de que la base de datos utilizada surgió del secuenciamiento del genoma de *M. tuberculosis*. Se han reportado otros mecanismos de resistencia, como bombas eflujo, proteínas pentapéptidos, reducción de la acumulación de la droga y mecanismos de respuesta al estrés (131–133). Por consiguiente, se presume que, en cepas resistentes a ciprofloxacina sin mutaciones, existen otros mecanismos de resistencia no relacionados con mutaciones, los cuales también pueden afectar el nivel de resistencia a fluoroquinolonas, a pesar de haber encontrado un patrón conservado de mutaciones en GyrA a nivel global.

En el resto de proteínas evaluadas, GyrB, GidB, TlyA y GidB, la baja cantidad de mutaciones resultó en una limitación estadística en la comparación de la distribución de mutaciones de Perú respecto a aquella del resto del mundo. En consecuencia, no se pudo determinar si existe un patrón conservado de mutaciones a nivel global en estas proteínas.

Identificación de regiones *hotspots* en la secuencia y estructura de la proteína codificada

En GyrA, la distribución de mutaciones en la secuencia presentó 4 regiones *hotspots*, mientras que la distribución de mutaciones en la estructura permitió visualizar una región *hotspot* adicional, en consecuencia, ambos análisis fueron complementarios. En primer lugar, se definió la región *hotspot* en el QRDR de
GyrA (residuos 74-113) por la alta acumulación de mutaciones tanto para Perú (n=10, 63%) como para el resto del mundo (n=28, 60%). Cabe resaltar que, dentro de este hotspot, la región α4 acumuló la mayoría de mutaciones tanto para Perú (n=8, 50%) como para el resto del mundo (n=20, 43%). Por ello, se confirma que la región QRDR está asociada con la resistencia a fluoroquinolonas. La región QRDR es de especial importancia, porque está involucrada en la formación del QBP (sitio de unión a la droga) (39). Resulta interesante que esta región α 4, localizada dentro de la región hotspot en el QRDR, formó parte tanto del sitio activo de GyrA (región $\alpha 3$ -loop- $\alpha 4$ y los sitios catalíticos de unión al ADN) como de regiones específicas del sitio de unión a la droga, llamado QBP, (residuos 84-88, 86-91 de GyrA, los residuos 459-462, 480-486, 498-502 y el ADN) (39). Previos reportes postularon que mutaciones en la región QRDR actuaron mediante alguno de estos mecanismos de resistencia: la modificación de la geometría del sitio activo (39) y la disminución en la afinidad de la droga a partir de la disrupción del puente iónico agua-metal (134). Estos mecanismos de resistencia explican la alta cantidad de mutaciones encontradas en la región hotspot en el QRDR (residuos 74-113) y la hélice α4 (residuos 89-99). Por lo tanto, esta región hotspot principal soporta la hipótesis de que la resistencia a fluoroquinolonas está asociada a mutaciones en la región QRDR de la ADN girasa mediante dos mecanismos de resistencia.

En la misma línea de la resistencia a fluoroquinolonas, se conoce que, a pesar de la baja frecuencia de mutaciones en GyrB (1-2%), estas mutaciones son determinantes en la resistencia a estas drogas (59). Se demostró que el mecanismo de resistencia en GyrB se da a partir de la alteración del volumen del QBP, que conduce a la inestabilidad de la unión de la droga en el QBP (39). Efectivamente, se encontró

una región *hotspot* circundante al QRDR de GyrB (residuos 461-501) con una alta cantidad de mutaciones (44%). Por ello, las mutaciones de esta región *hotspot* circundante al QRDR de GyrB afectarían el volumen del QBP. Por otro lado, se resalta que las distribuciones de las dos subunidades, GyrA y GyrB, de la ADN girasa fueron diferentes, porque la región *hotspot* alrededor del QRDR de GyrB (n= 12, 44%) presentó una leve menor cantidad de mutaciones, mientras que la región *hotspot* en el QRDR de GyrA acumuló la mayor cantidad de mutaciones (28 mutaciones únicas) de las 5 regiones *hotspots* encontradas en esta proteína. Si bien no se ha realizado un estudio estructural de las mutaciones, esta diferencia podría ser atribuida a las interacciones no específicas de los residuos del QRDR de GyrB (R482, T500 y E501) con el grupo C7 de la fluoroquinolona, como se reportó previamente (38).

En el análisis de la resistencia a otras drogas de segunda línea, se analizaron otras 3 proteínas GidB, TlyA y ThyA, que no son genes blancos, sin embargo, TlyA (45,135) y ThyA (84) son importantes dentro del mecanismo de resistencia a capreomicina y ácido paraaminosalicílico, respectivamente, mientras que GidB (14) es un potencial candidato en la resistencia a kanamicina. Entre ellos, se reportó solo el rol de la mutación G232D (45), la cual perteneció a la región *hotspot* circundante a la tétrada catalítica en TlyA. Por ello, profundizando en el asunto de la resistencia a capreomicina, se conoce que el 60% de las cepas clínicas con la mutación A1401G en el gen *rrs* fueron resistentes a capreomicina, contradiciendo a lo esperado por los resultados *in vitro*, donde el 100% de las cepas modificadas genéticamente con la mutación A1401G resultaron ser resistente a esta droga. La explicación para esta situación es la posible existencia de mutaciones

compensatorias en las cepas clínicas, que contribuyen a disminuir el nivel de resistencia (83). En la búsqueda de nuevas proteínas para mejorar la sensibilidad en la detección de la resistencia a capreomicina, se propuso a TlyA como marcador candidato (14). TlyA no es una proteína blanco de la capreomicina, sin embargo, es necesaria para la metilación del ARN (45), que permite la unión de la capreomicina al ARN (10). La proteína TlyA presenta dos sitios catalíticos: la tétrada catalítica y el sitio de unión a SAM (50), sin embargo, se señaló a la tétrada catalítica como responsable de la actividad enzimática de TlyA (47), siendo su función la metilación del ARNr 23S (48). En el actual estudio, la región hotspot se encontró circundante a la tétrada catalítica (G232D, S228R, N236K, G193E) y acumuló una baja cantidad de mutaciones (n=4, 29%), provenientes de la región loop-α5-loop- $\beta 6$ -loop- $\beta 7$ -loop- $\alpha 6$. Este hallazgo confirma una previa hipótesis acerca de que la mutaciones cerca de la tétrada catalítica de TlyA ocasionan resistencia a capreomicina (135). La mutación puntual G232D, perteneciente a este *hotspot*, fue asociada a resistencia a capreomicina en un estudio experimental (45). Por ello, las mutaciones puntuales de esta región hotspot circundante a la tétrada catalítica afectarían la actividad metiltransferasa de TlyA. Actualmente, si bien TlyA es considerada un marcador no sensible en la resistencia a capreomicina, el hallazgo de una región hotspot circundante a la tétrada catalítica podría revalorar las mutaciones pertenecientes a esta región hotspot en la prueba GenoType MTBDRsl v2, en especial, para la detección de cepas resistentes a capreomicina que no presentan una mutación en el gen rrs.

En la resistencia a ácido paraaminosalicílico, se sabe que el 36% de cepas resistentes a PAS presenta mutaciones en ThyA, donde la desactivación de ThyA

94

es un importante mecanismo de resistencia a esta droga (84). En el presente estudio, la región *hotspot* en el sitio de unión al cofactor MTHF (F152V, D169N, C161T, H147R) se ubicó en la región β 4-*loop*- β 5 y acumuló una baja cantidad de mutaciones (n=4, 13%). A pesar que ninguna de estas mutaciones fue evaluada mediante mutagénesis, las mutaciones L143P, C146R y L172P, pertenecientes a la región *hotspot* en el sitio de unión al cofactor MTHF, disminuyeron la afinidad del cofactor MTHF, lo cual fue comprendido como una unión débil entre el cofactor MTHF y la proteína ThyA (15). Por ello, esto nos sugiere que las mutaciones de la región *hotspot* en el sitio de unión al cofactor MTHF generarían una alteración en la función de ThyA.

Por otro lado, se encontraron regiones *hotspots* asociadas a los sitios activos de GidB y TlyA en la resistencia a kanamicina y resistencia cruzada a kanamicina y capreomicina. Un estudio epidemiológico en Perú reportó que la resistencia cruzada a kanamicina y capreomicina es mayor comparada con la resistencia generada a cada una de estas drogas por separado (4). Por ello, estos resultados podrían indicar nuevos marcadores para la detección de la resistencia cruzada, sin embargo, por la falta de información básica sobre mecanismos de resistencia a kanamicina y resistencia cruzada a kanamicina y capreomicina mediante GidB y TlyA, no se pueden confirmar como potenciales candidatos en la detección de resistencia. Por otro lado, las mutaciones G73R (136) y S70R (130), pertenecientes a la región *hotspot* circundante al sitio de unión a SAM en GidB, fueron reportadas en cepas resistentes a estreptomicina (137). Se reportó que el uso de GidB como marcador diagnóstico en la resistencia cruzada a estreptomicina y kanamicina fue debatible, porque presentó una variedad de mutaciones en cepas sensibles (98). Por ello, sería recomendable dilucidar si la resistencia a estreptomicina influye en la formación de las regiones *hotspots* en GidB y el rol de la mutación G73R en la resistencia a kanamicina y resistencia cruzada a kanamicina y capreomicina.

La información sobre las regiones hotspots en el sitio de unión a la droga, de GyrA y en GyrB, o en el sitio activo, de TlyA y ThyA proporciona mutaciones que podrían ser correlacionadas con el fenotipo resistente a nivel experimental, así, a largo plazo, pueden ser potenciales marcadores diagnóstico en la prueba molecular GenoType MTBDRsl v2 y brindar mayor información sobre los mecanismos de resistencia. En la resistencia a capreomicina, TlyA es considerada un marcador no sensible (151), porque la mutación N236K en TlyA se reportó en 2 de 55 aislados clínicos resistentes a capreomicina, sin embargo, la mutación G232D en TlyA, perteneciente a la región *hotspot* circundante a la tétrada catalítica, es remarcable, porque se encontró en el presente estudio y fue reportada en la literatura (45,66). En cambio, en la resistencia a ácido paraaminosalicílico, se encuentra menos información sobre las mutaciones involucradas en la región hotspot del sitio activo en ThyA. Por ello, sería necesario realizar estudios estructurales para evaluar las mutaciones de las regiones hotspots de TlyA, principalmente, como potenciales marcadores diagnósticos dentro de la prueba molecular GenoType MTBDRsl v2. En la resistencia a fluoroquinolonas, existe un mayor interés en el desarrollo de inhibidores de la actividad de la ADN girasa en cepas resistentes (138). Por ello, la existencia de una región hotspot principal asociada al QRDR de GyrA y GyrB de la ADN girasa brindaría información para el desarrollo de análogos que puedan unirse de forma diferente al blanco molecular ADN girasa. Cabe resaltar que, contrario a lo esperado, Malik et al. (95) describió que las mutaciones A504V y

A504T, pertenecientes a la región *hotspot* en el QRDR de GyrB, no generaron suficiente nivel de resistencia (95). Por ello, antes del desarrollo de nuevas drogas, sería necesario una correlación de mutaciones de las regiones *hotspots* encontradas con el fenotipo resistente.

En estudios previos, se identificó la región hotspot como una acumulación de mutaciones en la distribución de mutaciones en la secuencia (19,20). Nuestros resultados confirmaron esta distribución particular de mutaciones en la secuencia, y también en la estructura, para la mayoría de las regiones hotspots encontrados en GyrA y una de las dos regiones hotspots en ThyA. Esta similitud de la distribución de mutaciones en la secuencia y estructura de la proteína codificada sería excepcional. Se reportó que la distribución de mutaciones en la secuencia fue diferente a la distribución de mutaciones en la estructura, porque las mutaciones en la estructura se asociaron a una función de la proteína y no es consecuencia de vecinos cercanos (21). Efectivamente, en ciertas situaciones, las regiones hotspots fueron definidas visualmente en la estructura. En el primer caso, la existencia de una región hotspot exclusivamente en la estructura evidenció que la distribución de mutaciones en la secuencia fue diferente a la distribución de mutaciones en la estructura tridimensional: Ciertas mutaciones fueron encontradas a lo largo de la secuencia de GyrA (región hotspot circundante a los dos loops conservados de GyrA y GyrB) y GidB (región hotspot circundante al sitio de unión a SAM en la resistencia a kanamicina y resistencia cruzada a kanamicina y capreomicina), mientras que, las mutaciones fueron agrupadas en una región hotspot en la estructura. En el segundo caso, el número de regiones hotspots en la distribución de mutaciones en la secuencia fue diferente en la distribución de mutaciones en la estructura, porque ciertas mutaciones presentaron una posición diferente a lo esperado. En esta situación, solo las mutaciones pertenecientes a la región hotspot en la estructura fueron consideradas para la identificación de una región hotspot al final, ya que la región hotspot supone un nuevo mecanismo como se realizado en otro estudio (21). En este caso, se obtuvo que la mayoría de las mutaciones de los extremos proximales del QRDR de GyrB se agruparon en una sola región hotspot en la estructura. Por ello, la distribución de mutaciones en la estructura de GyrB permitió confirmar las mutaciones involucradas en las regiones hotspots localizadas en el QRDR de GyrB y lejos del QBP. De forma similar, la distribución de mutaciones en la estructura de TlyA es levemente diferente a la distribución de mutaciones en la secuencia, puesto que, la región hotspot circundante a la tétrada catalítica presentó un menor número de mutaciones en la estructura. Asimismo, la región hotspot circundante al sitio de unión a SAM en TlyA presentó la mutación adicional L180R en la estructura, porque esta mutación se encontró estructuralmente alrededor del sitio de unión a SAM. Por ello, la información estructural permitió confirmar las mutaciones acumuladas en una región específica. De este modo, en un futuro, las mutaciones de las regiones hotspots puedan ser correlacionadas con su fenotipo resistente.

La presión de selección farmacológica

La similitud de las distribuciones de mutaciones entre Perú y el resto del mundo y la presencia de regiones *hotspots* comunes en GyrA permitió inferir que la presión de selección farmacológica de las fluoroquinolonas es uniforme a nivel global como se reportó para otras drogas (19,88). Además, específicamente, la alta acumulación de mutaciones en la región *hotspot* localizada en el QRDR de GyrA reveló una

presión de selección farmacológica históricamente alta sobre GyrA, de acuerdo a lo esperado por un análisis similar (20). En cambio, en el resto de proteínas, GyrB, GidB, TlyA y ThyA, no se pudo inferir si la presión de selección farmacológica es uniforme a nivel global debido a la baja cantidad de mutaciones, sin embargo, las regiones *hotspots* encontradas cerca del sitio de unión a la droga o del sitio activo en estas proteínas indicarían que existen mutaciones sometidas a una presión de selección farmacológica. Por otro lado, se sabe que los genes esenciales presentan una mayor presión de selección que los genes no esenciales con el fin de que la bacteria sobreviva a ambientes extremos y severos (89). Por ello, se diferenció si los genes evaluados podrían ser genes esenciales o no esenciales con el fin de indicar si existe una posible presión de selección farmacológica relacionada con un gen no esencial.

Se describió que el punto de corte de 12 Å definió una región de unión al ligando (139), el cual puede corresponder con interacciones electrostáticas (12 Å), interacciones *van der Waals* (10-12 Å) (39,115) y en menor grado con enlaces de hidrógeno (2.2-4 Å) (140). En la resistencia a fluoroquinolonas mediante GyrA, solamente unas cuantas mutaciones (G88A, G88R, G88C, A90V, A90T, A90L, S91P, S91A, S91L), localizadas en el *hotspot* localizado QRDR, presentaron distancias por debajo del punto de corte de 12 Å. En cambio, la mayoría de las mutaciones de la región *hotspot* circundante al QRDR de GyrB y regiones *hotspots* alrededor del sitio activo de GidB, TlyA y ThyA presentaron distancias menores al punto de corte referencial para determinar el rango de influencia de las mutaciones. Considerando que la región QRDR es importante en la resistencia a

99

fluoroquinolonas (39), es preciso indicar que este punto de corte no fue determinante para la influencia de mutaciones, ya que nuestro estudio identificó que algunas de las mutaciones en el QRDR se encontraron con una distancia mayor o menor a 12 Å.

El análisis de distancias confirmó la existencia de algunas de las mutaciones del QRDR de GyrA cerca del QBP, mientras que todas las mutaciones circundantes al QRDR de GyrB se encontraron cerca del QBP. Esto indicaría que el análisis de distancias al centro de masa del sitio de unión a la droga tiene limitaciones para identificar las mutaciones asociadas a resistencia a fluoroquinolonas. En el resto de proteínas, se confirma la existencia de mutaciones de regiones hotspots cerca de los sitios activos de GidB, TlyA y ThyA. Al conocer si los genes son esenciales o no esenciales, se conoce que la ADN girasa tiene como función la replicación del ADN y, además, experimentalmente, se reportó que las mutaciones A90S, A90V, D94G y D94H no alteran la actividad de superenrollamiento de la enzima en ausencia de la droga (134). Esto nos dirige a especular que la ADN girasa es una proteína esencial en la replicación de ADN de la bacteria, porque su función no sería afectada por las mutaciones. Por otro lado, el mecanismo de resistencia de TlyA disminuye la actividad catalítica de TlyA (45), en consecuencia, se infiere que la metilación del ARN a partir de TlyA no es esencial para la bacteria a manera especulativa. Asimismo, ThyA fue reportada como una proteína no esencial para M. tuberculosis (54). Este mismo estudio demostró la activación de una vía compensatoria mediada por ThyX, cuando ThyA es inactivada en el mecanismo de resistencia a ácido paraaminosalicílico (54), siendo un ejemplo más de la evolución de las cepas resistentes de M. tuberculosis en respuesta a la presión de selección

farmacológica para restaurar la aptitud de la bacteria, como se reportó en los mecanismos que dirigen la evolución de *M. tuberculosis* en la resistencia (74). Por lo tanto, algunas mutaciones de la región *hotspot* en el QRDR de GyrA y la mayoría de las mutaciones de la región *hotspot* circundante al QRDR de GyrB estarían asociadas a una potencial presión de selección farmacológica de las fluoroquinolonas, mientras que, en el resto de mutaciones de GyrA, no se pudo determinar la presión de selección farmacológica. Asimismo, existen mutaciones de regiones *hotspots* cerca de los sitios activos de TlyA y ThyA asociadas a una posible presión de selección farmacológica.

En la validación de nuestros resultados de las distancias al centro de masa, un estudio reportó que los residuos 91 y 95 en GyrA de *M. ulcerans* (atribuidos a los residuos 90 y 94 en *M. tuberculosis*), presentaron distancias a las cadenas laterales de la fluoroquinolona en los intervalos de 2.53-2.73 Å y 2.94-2.82 Å, respectivamente (141). Estas distancias reportadas son menores que las distancias obtenidas. Por ello, se infiere que estas diferencias en los resultados se atribuyen al uso del centro de masa en vez de las cadenas laterales de la droga. Con base en ello, sería necesario un estudio de distancias que considere las cadenas laterales de la droga, específicamente las cadenas laterales de carboxilato y los grupos R1, R2, R7 y R8 de la fluoroquinolona, las cuales interaccionan con el sitio de unión a la droga en el complejo GyrA y GyrB, según lo descrito por Piton et al. (39).

En el resto de proteínas, a pesar que no se ha reportado estudios de distancias de las mutaciones a los sitios activos, se encontró que la distancia del residuo G37 en GidB (D: 14.7 Å) al centro de masa del sitio de unión a SAM resultó ser mayor al punto de corte de 12 Å. El residuo G37 es uno de los residuos del sitio de unión a SAM

en GidB, que interacciona con la cadena de carbono principal del residuo de metionina de SAM (116). Además, en un estudio sobre distancias medidas a partir de las cadenas laterales del ligando en ThyA, se reportó que la distancia del residuo W83 al cofactor MTHF fue de 4 Å (130), siendo esto diferente a la distancia obtenida para la mutación W83C (D: 20.7 Å). Considerando que las distancias obtenidas pueden involucrar interacciones de largo alcance mayores a 12 Å, sería necesario realizar la medición de distancias en un modelo de la estructura de GidB, TlyA y ThyA unido con el ligando, puesto que se utilizaron modelos de estructuras sin el ligando.

Además, se propuso que la geometría del sitio de unión a la droga (volumen y forma), en lugar de la red de enlaces de hidrógeno, fue fundamental para la unión de la fluoroquinolona en GyrA (39). Por ello, sería importante incluir el parámetro de geometría en la definición de las regiones *hotspots*, como también se realizó en un estudio sobre identificación de regiones *hotspots* (139) y, además, porque el mecanismo de resistencia está asociado con la alteración en la geometría del sitio activo (39). En este enfoque, se puede evaluar distancias entre pares de átomos, fluctuación angular, ángulos diedros, cambios en la superficie accesible solvente, la Desviación Cuadrática Media (RMSF); de la misma manera así como se reportó en un estudio, en donde se determinó que la función de la enzima pirazinamidasa de *M. tuberculosis* se puede explicar por descriptores geométricos asociados a mutaciones puntuales (142). En un futuro, resulta necesario evaluar dinámicamente la fluctuación de dichas cadenas laterales con el ligando, tanto para la proteína *wild*-

type como para cada mutación con la finalidad de evaluar el efecto de las mutaciones sobre la conformación de la proteína y su interacción con la droga. De forma particular, las mutaciones de la región *hotspot* alrededor de la región funcional de los dos *loops* conservados de GyrA y GyrB (D: 19.5-28.7 Å) presentaron distancias mayores a 12 Å. La mutación K247N (D: 15.4 Å) en GyrB, que influye en la resistencia a ofloxacina disminuyendo la actividad ATPasa (143), también presentó una distancia al centro de masa de este sitio funcional mayor a este punto de corte. Se describió un estudio para evitar que las distancias al centro de masa sean afectadas por el tamaño de la proteína (144). Los dos *loops* conservados de GyrA y GyrB conforman un sitio funcional grande. Por ello, se infiere que existe limitaciones en el análisis de distancias a partir del centro de masa para regiones funcionales grandes, como en el caso de los dos *loops* conservados de GyrA y GyrB.

Regiones *hotspots* lejos del sitio de unión a la droga o el sitio activo y mutaciones fuera de las regiones *hotspots*

Según la metodología del presente estudio, no se puede evaluar si mutaciones lejos del sitio de unión a la droga o del sitio activo están asociadas a una presión de selección farmacológica. Se esperaría que mutaciones distantes no se encuentren en asociación con la resistencia, sin embargo, se conoce la hipótesis de que mutaciones distantes del sitio activo pueden tener un efecto a largo alcance (145). Específicamente, un estudio sobre mutaciones fuera de la región determinante de resistencia a rifampicina (RDRR), en *M. tuberculosis*, señaló que las mutaciones fuera de la RDRR pueden generar restricciones en la unión de la droga a la proteína blanco (146) y se encontraron estructuralmente alrededor del bolsillo de unión a la

droga (145). Asimismo, en general, un estudio reportó que residuos distantes, con un efecto sobre el sitio activo de la enzima, presentaron una considerable cantidad de alostería de largo alcance; esto fue producido mediante la alteración de la red de interacciones no covalentes, dando como resultado la alteración del bolsillo del sitio activo (147). Asimismo, esto fue evidenciado, cuando los residuos distantes se encontraron insertados en un grupo de residuos conectados mediante interacciones cortas (148). Particularmente, se conoce que GyrA presenta varios sitios funcionales adicionales al QBP, como el sitio catalítico de unión al ADN y la región de dos loops conservados de GyrA y GyrB, necesarios para la actividad de la ADN girasa, así como elementos adicionales, como la región Torre y el ADN, que participan en la formación y estabilización del QBP en el complejo ADN girasa/ADN (39). En nuestros resultados, en la resistencia a fluoroquinolonas mediante GyrA, las regiones hotspots en el extremo proximal del QRDR y cerca del sitio catalítico de unión al ADN se encontraron estructuralmente alrededor del QBP, mientras que mutaciones de la región hotspot en una sección de la región Torre se localizaron más lejos del QBP. Por ello, se infiere que mutaciones de estas regiones hotspots en el extremo proximal del QRDR y circundante al sitio catalítico de unión al ADN generarían restricciones en la formación del QBP, mientras que las mutaciones de la sección de la región Torre afectarían la estabilización del QBP. De forma específica, resulta interesante mencionar que hemos identificado mutaciones importantes dentro del sitio catalítico de unión al ADN (D: 2.9-10.8 Å), a pesar que se encontraron distantes del QBP, los cuales afectarían la actividad ADN girasa. Si bien mutaciones agrupadas en una región hotspot en la estructura permiten identificar un nuevo mecanismo (21), estudios sobre mutaciones en GyrA,

que pertenecieron a la región hotspot en una sección de la región Torre, indicaron que la mutación A288D fue asociada a resistencia, mientras que la mutación T267I no fue asociada resistencia (117), así como también, en la región hotspot lejos del QBP en GyrB, la mutación múltiple R446C-T500N fue asociada a resistencia, mientras que la mutación T507M no fue asociada a resistencia (95). Además, respecto a las mutaciones fuera de las regiones hotspots, en GyrB, se reportó que la mutación A642P (D: 33.4 Å) fue asociada a resistencia (118). Por otro lado, en la resistencia a ácido paraaminosalicílico, se encontraron codones de parada en la región hotspot lejos del sitio de unión al cofactor MTHF en ThyA. Los codones de parada pueden implicar la pérdida de la función de una proteína (45,84), que significaría la desactivación de la proteína ThyA, característico del mecanismos de resistencia a PAS (84). Además, respecto a las mutaciones fuera de las regiones hotspots, de forma excepcional, ciertas mutaciones de ThyA (Y36C, P43S, L183V y T202A) se encontraron cerca del sitio de unión al cofactor MTHF. Dentro de este grupo, se reportó que la mutación T202A no está asociada a resistencia (84), sino es más bien un marcador del genotipo Latino América-Mediterráneo de M. tuberculosis (149). Por último, en la resistencia a capreomicina, la mutación L118R (D: 7.83 Å), localizada fuera de la región *hotspot* en TlyA, se encontró cerca de un sitio funcional adicional (sitio de unión a SAM). Se demostró que la deleción de un nucleótido del codón 119, residuo adjunto a la mutación L118R, ha sido asociada a resistencia a capreomicina (45). Por ello, a corto plazo, estudios estructurales de dinámica molecular serían necesarios para identificar si realmente mutaciones de una región hotspot lejos de un sitio funcional comparten un mecanismo de resistencia en común y si mutaciones de una región hotspot lejos del sitio funcional

o mutaciones fuera de las regiones *hotspots* podrían afectar en la formación o estabilización del sitio de unión a la droga, el sitio activo y sitios funcionales adicionales, en GyrA, GyrB, TlyA y ThyA. De otra forma, se tendría que determinar si estas mutaciones pueden ser parte de la diversidad genética de *M. tuberculosis* (150) o mutaciones compensatorias (74). En cambio, las mutaciones lejos del sitio funcional, que fueron asociadas a resistencia en GyrA y GyrB, según la literatura, tendrían un efecto a largo alcance sobre el sitio de unión a la droga mediante posibles factores estructurales nuevos.

Finalmente, nuestro estudio propone un patrón conservado de mutaciones en GyrA, el cual nos permite inferir que la presión de selección farmacológica de las fluoroquinolonas es uniforme a nivel global. Además, se confirma que el mecanismo de resistencia a fluoroquinolonas es debido principalmente a la presencia de la región hotspot en el QRDR. Asimismo, existe una posible presión de selección farmacológica en TlyA y en ThyA en la resistencia a capreomicina y a ácido paraaminosalicílico, respectivamente. Se necesita estudios adicionales para conocer los factores que generan las regiones hotspots en GidB y TlyA en la resistencia a kanamicina y resistencia cruzada a kanamicina y capreomicina, debido a que se encontraron regiones hotspots asociadas a sus sitios activos. Las demás regiones hotspots lejos del sitio de unión a la droga o del sitio activo son evidencias de una presión de selección, las cuales revelarían nuevos mecanismos de resistencia o, en todo caso, se necesita estudios adicionales para evaluar si estas mutaciones forman parte de la diversidad genética de M. tuberculosis o son mutaciones compensatorias. Las mutaciones reportadas en el presente trabajo pueden guiar futuros ensayos de mutagénesis dirigidos a responder dichas interrogantes.

VII. Conclusiones

- La distribución de mutaciones en GyrA en cepas resistentes a fluoroquinolonas y al menos a ciprofloxacina encontradas en el Perú es similar a aquella reportada en el resto del mundo, debido a que no existen diferencias significativas. Existe un patrón conservado de mutaciones en GyrA, el cual nos lleva a concluir que la presión de selección farmacológica de las fluoroquinolonas actúa uniformemente a nivel global siguiendo un mismo mecanismo.
- La distribución de mutaciones conservada en GyrA, en cepas resistentes, se agrupa en una región *hotspot* principal en el QRDR (residuos 74-113) y en nuevas regiones *hotspots* localizadas en un extremo proximal del QRDR (residuos 49-71), sitio catalítico de unión al ADN (residuos 112-130), una sección de la región Torre (residuos 267-298) y en la región de dos *loops* conservados de GyrA y GyrB, siendo esto último visualizado exclusivamente en la estructura.
- Existen algunas regiones *hotspots* visualizadas exclusivamente en la estructura tridimensional de la proteína que no son identificadas en la distribución de mutaciones en la secuencia, debido a que las mutaciones se encuentran dispersas en la estructura primaria de GyrA, GyrB y GidB. Asimismo, existen regiones *hotspots* en la estructura con un menor o mayor número de mutaciones a aquellas descritas inicialmente en la estructura primaria de TlyA y ThyA.
- Ciertas mutaciones de la región *hotspot* localizada en la región QRDR de GyrA (residuos 74-113) y todas las mutaciones de la región *hotspot*

circundante al QRDR de GyrB (visualizada exclusivamente en la estructura) sugieren una potencial presión de selección farmacológica de las fluoroquinolonas. Asimismo, la mayoría de mutaciones de la región *hotspot* circundante a la tétrada catalítica de TlyA (visualizada exclusivamente en la estructura) evidencia una posible presión de selección farmacológica de la capreomicina. De forma similar, la mayoría de mutaciones de la región *hotspot*, localizada en el sitio de unión al cofactor MTHF de ThyA (región 143-172), demuestra una posible presión de selección farmacológica del ácido paraaminosalicílico.

VIII. Recomendaciones

- Se sugiere realizar un ensayo de dinámica molecular para medir la Desviación Cuadrática Media de las posiciones atómicas (RMSD), Fluctuación Cuadrática Media (RMSF) y la estabilidad de las proteínas y así conocer los posibles cambios estructurales sobre los sitios funcionales por mutaciones en TlyA y complejo GyrA y GyrB.
- Debido a que GidB es asociada a resistencia a estreptomicina y existe resistencia cruzada entre kanamicina y estreptomicina, se recomienda analizar la distribución de mutaciones en la resistencia a estreptomicina y así conocer la presión de selección farmacológica de estreptomicina en GidB.
- Es recomendable evaluar las mutaciones de la región *hotspot* lejos del sitio activo de ThyA para conocer si una mutación genera un cambio estructural grande, que lleva a la desactivación de esta proteína.
- Se debería incluir las mutaciones de la región *hotspot* circundante a la tétrada catalítica de TlyA en la prueba molecular *MDTBDRsl* para la detección de resistencia a capreomicina y así disminuir la presión de selección farmacológica de la capreomicina en el futuro.
- Se necesita mayores estudios para descartar a Alr de la resistencia a cicloserina, debido a que no presentó mutaciones potenciales en cepas resistentes y podría tener un mecanismo de resistencia que no involucra mutaciones.

IX. Referencias bibliográficas

- 1. Asencios L, Quispe N, Mendoza-Ticona A, Leo E, Vásquez L, Jave O, et al. Vigilancia nacional de la resistencia a medicamentos antituberculosos, Perú 2005-2006. Rev Peru Med Exp Salud Publica. 2009;26(3):278-88.
- 2. World Health Organization (WHO). Global tuberculosis report 2019 [Internet]. Geneva; 2019 [citado 10 de diciembre de 2021]. Disponible en: https://www.who.int/publications-detail-redirect/9789241565714
- World Health Organization. 67.a Asamblea Mundial de la Salud en Ginebra. Resoluciones y Anexos [Internet]. Ginebra; 2014 [citado 8 de enero de 2020]. Disponible en: https://apps.who.int/gb/ebwha/pdf_files/WHA67-REC1/A67_2014_REC1-sp.pdf
- 4. Soto C. MG, Munayco Escate CV, Escalante Maldonado O, Valencia Torres E, Arica Gutiérrez J, Yagui Moscoso MJA. Perfil epidemiológico de la tuberculosis extensivamente resistente en el Perú, 2013-2015. Rev Panam Salud Pública. 2020;44:e29.
- 5. Modificatoria de la NTS N° 104-Minsa/DGSP V-01-Norma Técnica de Salud para la Atención Integral de las Personas Afectadas por Tuberculosis; aprobada por R.M. N° 752-2018/Minsa [Internet]. 2018. Disponible en: http://www.tuberculosis.minsa.gob.pe/portaldpctb/recursos/20190404114640 .pdf
- 6. Treatment Action Group (TAG). Una guía para activistas sobre fármacos de la TB [Internet]. New York; 2016 [citado 10 de diciembre de 2021]. Disponible en: https://www.treatmentactiongroup.org/wpcontent/uploads/2018/09/SP_tb_drugs_act_guide_3.pdf
- Hu Y, Xu L, He YL, Pang Y, Lu N, Liu J, et al. Prevalence and Molecular Characterization of Second-Line Drugs Resistance among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Southwest of China. BioMed Res Int. 2017;2017:e4563826.
- 8. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. Wiley Online Libr. 2019;128(6):1547-67.
- 9. Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest. 2015;147(4):1135-43.
- 10. Sowajassatakul A, Prammananan T, Chaiprasert A, Phunpruch S. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand. BMC Microbiol. 2014;14:165.

- 11. Prosser GA, de Carvalho LPS. Reinterpreting the Mechanism of Inhibition of Mycobacterium tuberculosis d-Alanine:d-Alanine Ligase by d-Cycloserine. Biochemistry. 2013;52(40):7145-9.
- 12. Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, et al. para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. J Biol Chem. 2013;288(32):23447-56.
- 13. Barletta F, Zamudio C, Rigouts L, Seas C. Resistencia a drogas de segunda línea en cepas peruanas de Mycobacterium tuberculosis multidrogorresistentes. Rev Peru Med Exp Salud Publica. 2014;31(4):676-82.
- Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. Evaluation of Genetic Mutations Associated with Mycobacterium tuberculosis Resistance to Amikacin, Kanamycin and Capreomycin: A Systematic Review. PLOS ONE. 2012;7(3):e33275.
- 15. Pandey B, Grover S, Kaur J, Grover A. Analysis of mutations leading to paraaminosalicylic acid resistance in Mycobacterium tuberculosis. Sci Rep. 2019;9(1):13617.
- 16. Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2017;72(12):3272-6.
- 17. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, et al. Dynamic Population Changes in Mycobacterium tuberculosis During Acquisition and Fixation of Drug Resistance in Patients. J Infect Dis. 2012;206(11):1724-33.
- 18. Medina E, Pieper DH. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Curr Top Microbiol Immunol. 2016;398:3-33.
- 19. Zimic M, Sheen P, Quiliano M, Gutierrez A, Gilman RH. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol. 2010;10(2):346-9.
- Quiliano M, Valdivia-Olarte H, Olivares C, Requena D, Gutiérrez AH, Reyes-Loyola P, et al. Molecular distribution of amino acid substitutions on neuraminidase from the 2009 (H1N1) human influenza pandemic virus. Bioinformation. 2013;9(13):673-9.
- 21. Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci. 2015;112(40):E5486-95.
- 22. Barrios-Payán JA, Castañón-Arreola M, Flores-Valdez MA, Hernández-Pando R. Aspectos biológicos, clínicos y epidemiológicos de la tuberculosis latente: Biological, clinical and epidemiological aspects of latent tuberculosis. Salud Pública México. 2010;52(1):70-8.

- 23. Delogu G, Sali M, Fadda G. The Biology of Mycobacterium Tuberculosis Infection. Mediterr J Hematol Infect Dis. 2013;5(1):e2013070.
- 24. Jave C HO, Contreras M M, Hernández U VA. Situación de la tuberculosis multirresistente en Perú. Acta Médica Peru. 2017;34(2):114-25.
- 25. Chevalier FL, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol. 2014;9(8):969-85.
- Del Castillo H, Mendoza-Ticona A, Saravia JC, Somocurcio JG. Epidemia de tuberculosis multidrogo resistente y extensivamente resistente a drogas (TB MDR/XDR) en el Perú: situación y propuestas para su control. Rev Peru Med Exp Salud Publica. 2009;26(3):380-6.
- Alarcón V, Alarcón E, Figueroa C, Mendoza-Ticona A. Tuberculosis en el Perú: Situación epidemiológica, avances y desafíos para su control. Rev Peru Med Exp Salud Pública. 2017;34(2):299-310.
- 28. Caminero. Multidrug-resistant tuberculosis: epidemiology, risk factors and case finding. Int J Tuberc Lung Dis. 2010;14(4):382-90.
- 29. Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009;7(12):845-55.
- Canales LR R. Primera evaluación por estudio de cohorte de tratamiento diferenciado del esquema dos [Internet]. 1996 [citado 19 de diciembre de 2021]. Disponible en: http://bvs.minsa.gob.pe/local/MINSA/366_PROG162-2.pdf
- World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019. Report No.: WHO/CDS/TB/2019.7.
- 32. Chang KC, Nuermberger E, Sotgiu G, Leung CC. New drugs and regimens for tuberculosis. Respirology. 2018;23(11):978-90.
- World Health Organization. WHO Treatment Guidelines for drug-resistant Tuberculosis, 2016 update. Geneva, Switzerland: World Health Organization; 2016. Report No.: WHO/HTM/TB/2016.04.
- Caminero JA, Cayla JA, García-García JM, García-Pérez FJ, Palacios JJ, Ruiz-Manzano J. Diagnóstico y tratamiento de la tuberculosis con resistencia a fármacos. Arch Bronconeumol. 2017;53(9):501-9.
- 35. Carrillo-Alduenda, Flores-Murrieta, Rodríguez-Alcocer. Update on the prescription of fluoroquinolones. Med Interna México. 2018;34(1):89-105.

- Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem. 2018;157:1223-48.
- 37. King DE, Malone R, Lilley SH. New Classification and Update on the Quinolone Antibiotics. Am Fam Physician. 2000;61(9):2741-8.
- 38. Blower TR, Williamson BH, Kerns RJ, Berger JM. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113(7):1706-13.
- 39. Piton J, Petrella S, Delarue M, André-Leroux G, Jarlier V, Aubry A, et al. Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PloS One. 2010;5(8):e12245.
- 40. Petrella S, Capton E, Raynal B, Giffard C, Thureau A, Bonneté F, et al. Overall Structures of Mycobacterium tuberculosis DNA Gyrase Reveal the Role of a Corynebacteriales GyrB-Specific Insert in ATPase Activity. Structure. 2019;27(4):579-589.e5.
- 41. Vanden Broeck A, Lotz C, Ortiz J, Lamour V. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat Commun. 2019;10(1):4935.
- 42. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of Quinolone Action and Resistance. Biochemistry. 2014;53(10):1565-74.
- Heifets L, Simon J, Pham V. Capreomycin is active against non-replicating M. tuberculosis. Ann Clin Microbiol Antimicrob. 2005;4:6.
- Bijpuria S, Sharma R, Taneja B. Loss of U1498 methylation in 16S rRNA by RsmE methyltransferase associates its role with aminoglycoside resistance in mycobacteria. J Glob Antimicrob Resist. 2020;23:359-69.
- 45. Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, et al. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol. 2019;309(7):151323.
- 46. Wong SY, Javid B, Addepalli B, Piszczek G, Strader MB, Limbach PA, et al. Functional Role of Methylation of G518 of the 16S rRNA 530 Loop by GidB in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(12):6311-8.
- 47. Feder M, Pas J, Wyrwicz LS, Bujnicki JM. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2'-O-methyltransferases. Gene. 2003;302(1):129-38.
- 48. Hager J, Staker BL, Bügl H, Jakob U. Active Site in RrmJ, a Heat Shockinduced Methyltransferase *. J Biol Chem. 2002;277(44):41978-86.

- 49. Witek MA, Kuiper EG, Minten E, Crispell EK, Conn GL. A Novel Motif for S-Adenosyl-l-methionine Binding by the Ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis. J Biol Chem. 2017;292(5):1977-87.
- 50. Katzung BG, Kruidering-Hall M, Trevor AJ. Aminoglycosides & Spectinomycin. In Katzung BG, Kruidering-Hall M, Trevor AJ, editores. Katzung & Trevor's Pharmacology Examination and Board Review Twelfth edition. 2018. p. 386.
- 51. Evangelopoulos D, Prosser GA, Rodgers A, Dagg BM, Khatri B, Ho MM, et al. Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nat Commun. 2019;10(1):4177.
- 52. de Chiara C, Homšak M, Prosser GA, Douglas HL, Garza-Garcia A, Kelly G, et al. D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat Chem Biol. 2020;16(6):686-94.
- 53. Prosser GA, de Carvalho LPS. Metabolomics Reveal d-Alanine:d-Alanine Ligase As the Target of d-Cycloserine in Mycobacterium tuberculosis. ACS Med Chem Lett. 2013;4(12):1233-7.
- Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance. Antimicrob Agents Chemother. 2015;59(9):5097-106.
- 55. Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet. 2018;50(2):307-16.
- 56. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol. 2017;8:681.
- 57. Palomino JC, Martin A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3(3):317-40.
- 58. Pantel A, Petrella S, Veziris N, Brossier F, Bastian S, Jarlier V, et al. Extending the Definition of the GyrB Quinolone Resistance-Determining Region in Mycobacterium tuberculosis DNA Gyrase for Assessing Fluoroquinolone Resistance in M. tuberculosis. Antimicrob Agents Chemother. 2012;56(4):1990-6.
- 59. Avalos E, Catanzaro D, Catanzaro A, Ganiats T, Brodine S, Alcaraz J, et al. Frequency and Geographic Distribution of gyrA and gyrB Mutations Associated with Fluoroquinolone Resistance in Clinical Mycobacterium Tuberculosis Isolates: A Systematic Review. PLOS One. 2015;10(3):e0120470.

- 60. Ouchi Y, Mukai T, Koide K, Yamaguchi T, Park JH, Kim H, et al. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Tuberculosis. 2020;120:101891.
- 61. Zaunbrecher MA, Sikes RD, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2009;106(47):20004-9.
- 62. Garzan A, Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, et al. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis. J Med Chem. 2016;59(23):10619-28.
- 63. Périchon B, Courvalin P. Antibiotic Resistance. In M. Schaechter, editor. Encyclopedia of Microbiology (Third Edition). San Diego, USA. 2009. p. 200.
- Maus CE, Plikaytis BB, Shinnick TM. Molecular Analysis of Cross-Resistance to Capreomycin, Kanamycin, Amikacin, and Viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(8):3192-7.
- 65. Jugheli L, Bzekalava N, de Rijk P, Fissette K, Portaels F, Rigouts L. High Level of Cross-Resistance between Kanamycin, Amikacin, and Capreomycin among Mycobacterium tuberculosis Isolates from Georgia and a Close Relation with Mutations in the rrs Gene. Antimicrob Agents Chemother. 2009;53(12):5064-8.
- 66. Santos-Lazaro D, Gavilan RG, Solari L, Vigo AN, Puyen ZM. Whole genome analysis of extensively drug resistant Mycobacterium tuberculosis strains in Peru. Sci Rep. 2021;11(1):9493.
- Brossier F, Guindo D, Pham A, Reibel F, Sougakoff W, Veziris N, et al. Performance of the New Version (v2.0) of the GenoType MTBDRsl Test for Detection of Resistance to Second-Line Drugs in Multidrug-Resistant Mycobacterium tuberculosis Complex Strains. J Clin Microbiol. 2016;54(6):1573.
- 68. Jian J, Yang X, Yang J, Chen L. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist. 2018;11:1627-34.
- 69. López-Roa P, Ruiz-Serrano MJ, Alcalá L, García-Escribano Ráez N, García de Viedma D, Bouza E. Susceptibility testing to second-line drugs and ethambutol by Genotype MTBDRsl and Bactec MGIT 960 comparing with agar proportion method. Tuberculosis. 2012;92(5):417-21.
- 70. World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Policy guidance.

Geneva, Switzerland: World Health Organization; 2016. Report No.: WHO/HTM/TB/2016.07.

- 71. Baquero F, Negri MC, Morosini MI, Blázquez J. Antibiotic-Selective Environments. Clin Infect Dis. 1998;27:S5-11.
- 72. Cooper VS, Honsa E, Rowe H, Deitrick C, Iverson AR, Whittall JJ, et al. Experimental Evolution In Vivo To Identify Selective Pressures during Pneumococcal Colonization. mSystems. 2020;5(3):e00352-20.
- 73. Rozen DE, de Visser JAGM, Gerrish PJ. Fitness Effects of Fixed Beneficial Mutations in Microbial Populations. Curr Biol. 2002;12(12):1040-5.
- 74. Nguyen QH, Contamin L, Nguyen TVA, Bañuls AL. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl. 2018;11(9):1498-511.
- 75. Arribas M, Kubota K, Cabanillas L, Lázaro E. Adaptation to Fluctuating Temperatures in an RNA Virus Is Driven by the Most Stringent Selective Pressure. PLoS ONE. 2014;9(6):e100940.
- White KA, Kisor K, Barber DL. Intracellular pH dynamics and chargechanging somatic mutations in cancer. Cancer Metastasis Rev. 2019;38(1-2):17-24.
- Liu Q, Liu H, Shi L, Gan M, Zhao X, Lyu LD, et al. Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc Natl Acad Sci U S A. 2021;118(17):e2017831118.
- 78. Liu Q, Wei J, Li Y, Wang M, Su J, Lu Y, et al. Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments. Sci Adv. 2020;6(22):eaba4901.
- Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354-73.
- 80. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell. 2001;104(6):901-12.
- 81. Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. 2012;67(4):819-31.
- 82. Li J, Gao X, Luo T, Wu J, Sun G, Liu Q, et al. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerg Microbes Infect. 2014;3(1):1-5.

- 83. Reeves AZ, Campbell PJ, Willby MJ, Posey JE. Disparities in Capreomycin Resistance Levels Associated with the rrs A1401G Mutation in Clinical Isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(1):444-9.
- 84. Fivian-Hughes AS, Houghton J, Davis EO. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology. 2012;158(2):308-18.
- Cavusoglu C, Hilmioglu S, Guneri S, Bilgic A. Characterization of rpoB Mutations in Rifampin-Resistant Clinical Isolates of Mycobacterium tuberculosis from Turkey by DNA Sequencing and Line Probe Assay. J Clin Microbiol. 2002;40(12):4435-8.
- 86. Das S, Duggal P, Roy R, Myneedu VP, Behera D, Prasad HK, et al. Identification of Hot and Cold spots in genome of Mycobacterium tuberculosis using Shewhart Control Charts. Sci Rep. 2012;2(1):297.
- 87. Suryamohan K, Diwanji D, Stawiski EW, Gupta R, Miersch S, Liu J, et al. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun Biol. 2021;4(1):1-11.
- 88. Vargas AP, Rios AA, Grandjean L, Kirwan DE, Gilman RH, Sheen P, et al. Determination of potentially novel compensatory mutations in rpoc associated with rifampin resistance and rpob mutations in Mycobacterium tuberculosis Clinical isolates from peru. Int J Mycobacteriology. 2020;9(2):121-37.
- 89. Luo H, Gao F, Lin Y. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci Rep. 2015;5(1):13210.
- Ehtram A, Shariq M, Ali S, Quadir N, Sheikh JA, Ahmad F, et al. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: Role in molecular immigration and emigration. Int J Med Microbiol. 2021;311(3):151495.
- 91. Advani J, Verma R, Chatterjee O, Pachouri PK, Upadhyay P, Singh R, et al. Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility. Front Microbiol. 2019;10:309.
- 92. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDR *sl* Test of Complex Mechanisms of Resistance to Second-Line Drugs and Ethambutol in Multidrug-Resistant *Mycobacterium tuberculosis* Complex Isolates. J Clin Microbiol. 2010;48(5):1683-9.
- 93. Hameed HMA, Tan Y, Islam MM, Guo L, Chhotaray C, Wang S, et al. Phenotypic and genotypic characterization of levofloxacin- and moxifloxacin-

resistant Mycobacterium tuberculosis clinical isolates in southern China. J Thorac Dis. 2019;11(11):4613-25.

- 94. Matsui T, Pinhata JMW, Rabello MC da S, Brandão AP, Ferrazoli L, Leão SC, et al. Frequency of first and second-line drug resistance-associated mutations among resistant Mycobacterium tuberculosis clinical isolates from São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2020;115:e200055.
- 95. Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New Insights into Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Genetic Analysis of gyrA and gyrB Mutations. PLOS ONE. 2012;7(6):e39754.
- 96. Falco A, Aranaga C, Ocampo I, Takiff H. Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Nardoni S, editor. Int J Microbiol. 2021;2021:1-7.
- 97. Eilertson B, Maruri F, Blackman A, Guo Y, Herrera M, van der Heijden Y, et al. A novel resistance mutation in *eccC* ⁵ of the ESX-5 secretion system confers ofloxacin resistance in *Mycobacterium tuberculosis*. J Antimicrob Chemother. 2016;71(9):2419-27.
- 98. Via LE, Cho SN, Hwang S, Bang H, Park SK, Kang HS, et al. Polymorphisms Associated with Resistance and Cross-Resistance to Aminoglycosides and Capreomycin in *Mycobacterium tuberculosis* Isolates from South Korean Patients with Drug-Resistant Tuberculosis. J Clin Microbiol. 2010;48(2):402-11.
- 99. Perdigao J, Macedo R, Malaquias A, Ferreira A, Brum L, Portugal I. Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J Antimicrob Chemother. 2010;65(2):224-7.
- 100. Feuerriegel S, Cox HS, Zarkua N, Karimovich HA, Braker K, Rüsch-Gerdes S, et al. Sequence Analyses of Just Four Genes To Detect Extensively Drug-Resistant *Mycobacterium tuberculosis* Strains in Multidrug-Resistant Tuberculosis Patients Undergoing Treatment. Antimicrob Agents Chemother. 2009;53(8):3353-6.
- 101. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22(4):735-45.
- 102. Kardan-Yamchi J, Kazemian H, Battaglia S, Abtahi H, Rahimi Foroushani A, Hamzelou G, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med. 2020;9(2):465.

- 103. Perdigao J, Gomes P, Miranda A, Maltez F, Machado D, Silva C, et al. Using genomics to understand the origin and dispersion of multidrug and extensively drug resistant tuberculosis in Portugal. Sci Rep. 2020;10(1):2600.
- 104. Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, et al. Aminoglycoside Cross-Resistance in Mycobacterium tuberculosis Due to Mutations in the 5' Untranslated Region of *whiB7*. Antimicrob Agents Chemother. 2013;57(4):1857-65.
- 105. Malinga L, Brand J, Olorunju S, Stoltz A, van der Walt M. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2016;85(4):433-7.
- 106. Wollenberg KR, Desjardins CA, Zalutskaya A, Slodovnikova V, Oler AJ, Quiñones M, et al. Whole-Genome Sequencing of Mycobacterium tuberculosis Provides Insight into the Evolution and Genetic Composition of Drug-Resistant Tuberculosis in Belarus. Carroll KC, editor. J Clin Microbiol. 2017;55(2):457-69.
- 107. Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2017;72(12):3272-6.
- 108. Regmi SM, Coker OO, Kulawonganunchai S, Tongsima S, Prammananan T, Viratyosin W, et al. Polymorphisms in drug-resistant-related genes shared among drug-resistant and pan-susceptible strains of sequence type 10, Beijing family of Mycobacterium tuberculosis. Int J Mycobacteriology. 2015;4(1):67-72.
- 109. Luo M, Li K, Zhang H, Yan X, Gu J, Zhang Z, et al. Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Infect Drug Resist. 2019;12:2269-75.
- 110. Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q. Genetic Determinants Involved in *p* -Aminosalicylic Acid Resistance in Clinical Isolates from Tuberculosis Patients in Northern China from 2006 to 2012. Antimicrob Agents Chemother. 2015;59(2):1320-4.
- 111. Mathys V, Wintjens R, Lefevre P, Bertout J, Singhal A, Kiass M, et al. Molecular Genetics of *para* -Aminosalicylic Acid Resistance in Clinical Isolates and Spontaneous Mutants of *Mycobacterium tuberculosis*. Antimicrob Agents Chemother. 2009;53(5):2100-9.
- 112. Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, et al. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect. 2021;27(11):1601-12.

- 113. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinforma Oxf Engl. 2007;23(21):2947-8.
- 114. Miao Z, Westhof E. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs. PLOS Comput Biol. 2015;11(12):e1004639.
- 115. Gupta M, Khan TS, Agarwal M, Haider MA. Understanding the Nature of Amino Acid Interactions with Pd(111) or Pd–Au Bimetallic Catalysts in the Aqueous Phase. Langmuir. 2018;34(4):1300-10.
- 116. Verma JS, Gupta Y, Nair D, Manzoor N, Rautela RS, Rai A, et al. Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014;69(11):2935-41.
- 117. Farhat MR, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, et al. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value. Am J Respir Crit Care Med. 2016;194(5):621-30.
- 118. Farhat MR, Jacobson KR, Franke MF, Kaur D, Sloutsky A, Mitnick CD, et al. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2016;54(3):727-33.
- 119. Chen X, He G, Wang S, Lin S, Chen J, Zhang W. Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China. Front Microbiol. 2019;10:1741.
- 120. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun. 2015;6:7119.
- 121. Pantel A, Petrella S, Veziris N, Matrat S, Bouige A, Ferrand H, et al. Description of compensatory gyrA mutations restoring fluoroquinolone susceptibility in Mycobacterium tuberculosis. J Antimicrob Chemother. 2016;71(9):2428-31.
- 122. Nakatani Y, Opel-Reading HK, Merker M, Machado D, Andres S, Kumar SS, et al. Role of Alanine Racemase Mutations in Mycobacterium tuberculosisd-Cycloserine Resistance. Antimicrob Agents Chemother. 61(12):e01575-17.
- 123. Green KD, Punetha A, Hou C, Garneau-Tsodikova S, Tsodikov OV. Probing the Robustness of Inhibitors of Tuberculosis Aminoglycoside Resistance Enzyme Eis by Mutagenesis. ACS Infect Dis. 2019;5(10):1772-8.
- 124. Zaunbrecher MA, Sikes RD, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside

acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2009;106(47):20004-9.

- 125. Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM. Novel Gyrase Mutations in Quinolone-Resistant and -Hypersusceptible Clinical Isolates of Mycobacterium tuberculosis: Functional Analysis of Mutant Enzymes. Antimicrob Agents Chemother. 2006;50(1):104-12.
- 126. Kim H, Nakajima C, Yokoyama K, Rahim Z, Kim YU, Oguri H, et al. Impact of the E540V Amino Acid Substitution in GyrB of Mycobacterium tuberculosis on Quinolone Resistance. Antimicrob Agents Chemother. 2011;55(8):3661-7.
- 127. Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014;69(2):331-42.
- 128. Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, et al. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Comput Struct Biotechnol J. 2021;19:2423-46.
- 129. Kim H, Nakajima C, Kim YU, Yokoyama K, Suzuki Y. Influence of lineagespecific amino acid dimorphisms in GyrA on Mycobacterium tuberculosis resistance to fluoroquinolones. Jpn J Infect Dis. 2012;65(1):72-4.
- 130. Pandey B, Grover S, Goyal S, Jamal S, Singh A, Kaur J, et al. Novel missense mutations in gidB gene associated with streptomycin resistance in Mycobacterium tuberculosis: insights from molecular dynamics. J Biomol Struct Dyn. 2019;37(1):20-35.
- 131. Kocagöz T, Hackbarth CJ, Unsal I, Rosenberg EY, Nikaido H, Chambers HF. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1996;40(8):1768-74.
- 132. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12-31.
- 133. Boldrin F, Provvedi R, Cioetto Mazzabò L, Segafreddo G, Manganelli R. Tolerance and Persistence to Drugs: A Main Challenge in the Fight Against Mycobacterium tuberculosis. Front Microbiol. 2020;11:1924.
- 134. Aldred KJ, Blower TR, Kerns RJ, Berger JM, Osheroff N. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proc Natl Acad Sci U S A. 2016;113(7):E839-46.

- 135. Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(2):571-7.
- 136. Cambau E, Viveiros M, Machado D, Raskine L, Ritter C, Tortoli E, et al. Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study. J Antimicrob Chemother. 2015;70(3):686-96.
- 137. Spies FS, Ribeiro AW, Ramos DF, Ribeiro MO, Martin A, Palomino JC, et al. Streptomycin Resistance and Lineage-Specific Polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol. 2011;49(7):2625-30.
- 138. Bhagwat A, Deshpande A, Parish T. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Front Cell Infect Microbiol [Internet]. 2022 [citado 25 de octubre de 2022];12. Disponible en: https://www.frontiersin.org/articles/10.3389/fcimb.2022.974101
- 139. Koes DR, Camacho CJ. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Bioinforma Oxf Engl. 15 de marzo de 2012;28(6):784-91.
- 140. Veeramachaneni GK, Thunuguntla VBSC, Bobbillapati J, Bondili JS. Structural and simulation analysis of *hotspot* residues interactions of SARS-CoV 2 with human ACE2 receptor. J Biomol Struct Dyn. 2020;1-11.
- 141. Kim H, Mori S, Kenri T, Suzuki Y. Molecular Characterization of Mycobacterium ulcerans DNA Gyrase and Identification of Mutations Reducing Susceptibility to Quinolones In Vitro. Antimicrob Agents Chemother. 2022;66(4):e01902-21.
- 142. Supo-Escalante RR, Médico A, Gushiken E, Olivos-Ramírez GE, Quispe Y, Torres F, et al. Prediction of Mycobacterium tuberculosis pyrazinamidase function based on structural stability, physicochemical and geometrical descriptors. PLOS ONE. 2020;15(7):e0235643.
- 143. Wang WF, Lu MYJ, Cheng TJR, Tang YC, Teng YC, Hwa TY, et al. Genomic Analysis of Mycobacterium tuberculosis Isolates and Construction of a Beijing Lineage Reference Genome. Genome Biol Evol. 2020;12(2):3890-905.
- 144. Salamanca Viloria J, Allega MF, Lambrughi M, Papaleo E. An optimal distance cutoff for contact-based Protein Structure Networks using side-chain centers of mass. Sci Rep. 2017;7(1):2838.
- 145. Siu GKH, Zhang Y, Lau TCK, Lau RWT, Ho PL, Yew WW, et al. Mutations outside the rifampicin resistance-determining region associated with

rifampicin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2011;66(4):730-3.

- 146. Amusengeri A, Khan A, Tastan Bishop Ö. The Structural Basis of Mycobacterium tuberculosis RpoB Drug-Resistant Clinical Mutations on Rifampicin Drug Binding. Molecules. 2022;27(3):885.
- 147. Osuna S. The challenge of predicting distal active site mutations in computational enzyme design. WIREs Comput Mol Sci. 2021;11(3):e1502.
- 148. Mendonça LMF, Marana SR. Single mutations outside the active site affect the substrate specificity in a β -glycosidase. Biochim Biophys Acta BBA Proteins Proteomics. 2011;1814(12):1616-23.
- 149. Feuerriegel S, Köser C, Trübe L, Archer J, Rüsch Gerdes S, Richter E, et al. Thr202Ala in thyA is a marker for the Latin American Mediterranean lineage of the Mycobacterium tuberculosis complex rather than para-aminosalicylic acid resistance. Antimicrob Agents Chemother. 2010;54(11):4794-8.
- 150. Hijikata M, Keicho N, Duc LV, Maeda S, Hang NTL, Matsushita I, et al. Spoligotyping and whole-genome sequencing analysis of lineage 1 strains of Mycobacterium tuberculosis in Da Nang, Vietnam. PLOS ONE. 2017;12(10):e0186800.
- 151. Soudani A, Hadjfredj S, Zribi M, Messaoud T, Masmoudi A, Majed B, et al. First report of molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis isolates from a Tunisian hospital. Clin Microbiol Infect. 2010;16(9):1454-7.
- 152. Arjomandzadegan M, Titov L, Farnia P, Owlia P, Ranjbar R, Sheikholeslami F, et al. Molecular detection of fluoroquinolone resistance-associated gyrA mutations in ofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Iran and Belarus. Int J Mycobacteriology. 2016;5(3):299-305.
- 153. Veziris N, Martin C, Brossier F, Bonnaud F, Denis F, Aubry A. Treatment failure in a case of extensively drug-resistant tuberculosis associated with selection of a GyrB mutant causing fluoroquinolone resistance. Eur J Clin Microbiol Infect Dis. 2007;26(6):423-5.
- 154. Chernyaeva E, Fedorova E, Zhemkova G, Korneev Y, Kozlov A. Characterization of multiple and extensively drug resistant Mycobacterium tuberculosis isolates with different ofloxacin-resistance levels. Tuberculosis. 2013;93(3):291-5.
- 155. Jnawali HN, Hwang SC, Park YK, Kim H, Lee YS, Chung GT, et al. Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn Microbiol Infect Dis. 2013;76(2):187-96.

- 156. Poudel A, Maharjan B, Nakajima C, Fukushima Y, Pandey BD, Beneke A, et al. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis. 2013;93(1):84-8.
- 157. Streicher EM, Bergval I, Dheda K, Böttger EC, Gey van Pittius NC, Bosman M, et al. Mycobacterium tuberculosis Population Structure Determines the Outcome of Genetics-Based Second-Line Drug Resistance Testing. Antimicrob Agents Chemother. 2012;56(5):2420-7.
- 158. Suzuki Y, Nakajima C, Tamaru A, Kim H, Matsuba T, Saito H. Sensitivities of ciprofloxacin-resistant Mycobacterium tuberculosis clinical isolates to fluoroquinolones: role of mutant DNA gyrase subunits in drug resistance. Int J Antimicrob Agents. 2012;39(5):435-9.
- 159. Tahmasebi P, Farnia P, Sheikholslami F, Velayati A. Rapid identification of extensively and extremely drug resistant tuberculosis from multidrug resistant strains; using PCR-RFLP and PCR-SSCP. Iran J Microbiol. 2012;4(4):165-70.
- 160. Yuan X, Zhang T, Kawakami K, Zhu J, Li H, Lei J, et al. Molecular characterization of multidrug- and extensively drug-resistant Mycobacterium tuberculosis strains in Jiangxi, China. J Clin Microbiol. 2012;50(7):2404-13.
- 161. Ali A, Hasan R, Jabeen K, Jabeen N, Qadeer E, Hasan Z. Characterization of mutations conferring extensive drug resistance to Mycobacterium tuberculosis isolates in Pakistan. Antimicrob Agents Chemother. 2011;55(12):5654-9.
- 162. Ando H, Mitarai S, Kondo Y, Suetake T, Kato S, Mori T, et al. Evaluation of a line probe assay for the rapid detection of gyrA mutations associated with fluoroquinolone resistance in multidrug-resistant Mycobacterium tuberculosis. J Med Microbiol. 2011;60(2):184-8.
- 163. El Sahly HM, Teeter LD, Jost KC, Dunbar D, Lew J, Graviss EA. Incidence of moxifloxacin resistance in clinical Mycobacterium tuberculosis isolates in Houston, Texas. J Clin Microbiol. 2011;49(8):2942-5.
- 164. Huang WL, Chi TL, Wu MH, Jou R. Performance assessment of the GenoType MTBDRsl test and DNA sequencing for detection of second-line and ethambutol drug resistance among patients infected with multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2011;49(7):2502-8.
- 165. Hu Y, Mathema B, Wang W, Kreiswirth B, Jiang W, Xu B. Population-based investigation of fluoroquinolones resistant tuberculosis in rural eastern China. Tuberc Edinb Scotl. 2011;91(3):238-43.
- 166. Singh M, Jadaun GPS, Ramdas null, Srivastava K, Chauhan V, Mishra R, et al. Effect of efflux pump inhibitors on drug susceptibility of ofloxacin resistant Mycobacterium tuberculosis isolates. Indian J Med Res. 2011;133:535-40.

- 167. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl Test of Complex Mechanisms of Resistance to Second-Line Drugs and Ethambutol in Multidrug-Resistant Mycobacterium tuberculosis complex Isolates. J Clin Microbiol. 2010;48(5):1683-9.
- 168. Kiet VS, Lan NTN, An DD, Dung NH, Hoa DV, van Vinh Chau N, et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2010;48(8):2934-9.
- 169. Lau RWT, Ho PL, Kao RYT, Yew WW, Lau TCK, Cheng VCC, et al. Molecular Characterization of Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Analysis of gyrA Mutation at Position 74. Antimicrob Agents Chemother. 2011;55(2):608-14.
- 170. Yin X, Yu Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China. J Infect. 2010;61(2):150-4.
- 171. Bravo LTC, Tuohy MJ, Ang C, Destura RV, Mendoza M, Procop GW, et al. Pyrosequencing for rapid detection of Mycobacterium tuberculosis resistance to rifampin, isoniazid, and fluoroquinolones. J Clin Microbiol. 2009;47(12):3985-90.
- 172. Duong DA, Hong Duyen NT, Lan NTN, Hoa DV, Ha DTM, Kiet VS, et al. Beijing Genotype of Mycobacterium tuberculosis Is Significantly Associated with High-Level Fluoroquinolone Resistance in Vietnam. Antimicrob Agents Chemother. 2009;53(11):4835-9.
- 173. Hillemann D, Rüsch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2009;47(6):1767-72.
- 174. Mokrousov I, Otten T, Manicheva O, Potapova Y, Vishnevsky B, Narvskaya O, et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother. 2008;52(8):2937-9.
- 175. Sun Z, Zhang J, Zhang X, Wang S, Zhang Y, Li C. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. Int J Antimicrob Agents. 2008;31(2):115-21.
- 176. van Doorn HR, An DD, de Jong MD, Lan NTN, Hoa DV, Quy HT, et al. Fluoroquinolone resistance detection in Mycobacterium tuberculosis with locked nucleic acid probe real-time PCR. Int J Tuberc Lung Dis. 2008;12(7):736-42.

- 177. Chan RCY, Hui M, Chan EWC, Au TK, Chin ML, Yip CK, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother. 2007;59(5):866-73.
- 178. Kam KM, Yip CW, Cheung TL, Tang HS, Leung OC, Chan MY. Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrugresistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist Larchmt N. 2006;12(1):7-11.
- 179. Siddiqi N, Shamim M, Hussain S, Choudhary RK, Ahmed N, Prachee null, et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob Agents Chemother. 2002;46(2):443-50.
- 180. Williams KJ, Chan R, Piddock LJV. gyrA of ofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Hong Kong. J Antimicrob Chemother. 1996;37(5):1032-4.
- 181. Xu C, Kreiswirth BN, Sreevatsan S, Musser JM, Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J Infect Dis. 1996;174(5):1127-30.
- 182. Escribano I, Rodríguez JC, Llorca B, García-Pachon E, Ruiz M, Royo G. Importance of the Efflux Pump Systems in the Resistance of Mycobacterium tuberculosis to Fluoroquinolones and Linezolid. Chemotherapy. 2007;53(6):397-401.
- 183. Gupta A, Sinha P, Rathod S, Shanmugam SK, Uma Devi KR, Anupurba S, et al. Genotype analysis of ofloxacin-resistant multidrug-resistant Mycobacterium tuberculosis isolates in a multicentered study from India. Indian J Med Res. 2020;151(4):361-70.
- 184. Rufai SB, Umay K, Singh PK, Singh S. Performance of Genotype MTBDRsl V2.0 over the Genotype MTBDRsl V1 for detection of second line drug resistance: An Indian perspective. PLoS ONE. 2020;15(3):e0229419.
- 185. Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, et al. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics. 2020;21(1):174.
- 186. Bablishvili N, Tukvadze N, Shashkina E, Mathema B, Gandhi NR, Blumberg HM, et al. Impact of gyrB and eis Mutations in Improving Detection of Second-Line-Drug Resistance among Mycobacterium tuberculosis Isolates from Georgia. Antimicrob Agents Chemother. 2017;61(9):e01921-16.
- 187. Osei-Wusu S, Amo Omari M, Asante-Poku A, Darko Otchere I, Asare P, Forson A, et al. Second-line anti-tuberculosis drug resistance testing in Ghana

identifies the first extensively drug-resistant tuberculosis case. Infect Drug Resist. 2018;11:239-46.

- 188. Daum LT, Konstantynovska OS, Solodiankin OS, Liashenko OO, Poteiko PI, Bolotin VI, et al. Next-Generation Sequencing for Characterizing Drug Resistance-Conferring Mycobacterium tuberculosis Genes from Clinical Isolates in the Ukraine. J Clin Microbiol. 2018;56(6):e00009-18.
- 189. Oudghiri A, Karimi H, Chetioui F, Zakham F, Bourkadi JE, Elmessaoudi MD, et al. Molecular characterization of mutations associated with resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients from high prevalence tuberculosis city in Morocco. BMC Infect Dis. 2018;18(1):98.
- 190. Rufai SB, Singh J, Kumar P, Mathur P, Singh S. Association of gyrA and rrs gene mutations detected by MTBDRsl V1 on Mycobacterium tuberculosis strains of diverse genetic background from India. Sci Rep. 2018;8(1):9295.
- 191. Bouzouita I, Cabibbe AM, Trovato A, Daroui H, Ghariani A, Midouni B, et al. Whole-Genome Sequencing of Drug-Resistant Mycobacterium tuberculosis Strains, Tunisia, 2012–2016. Emerg Infect Dis. 2019;25(3):547-50.
- 192. Cancino-Muñoz I, Moreno-Molina M, Furió V, Goig GA, Torres-Puente M, Chiner-Oms Á, et al. Cryptic Resistance Mutations Associated With Misdiagnoses of Multidrug-Resistant Tuberculosis. J Infect Dis. 2019;220(2):316-20.
- 193. Fiebig L, Kohl TA, Popovici O, Mühlenfeld M, Indra A, Homorodean D, et al. A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt. Eurosurveillance. 2017;22(2):30439.
- 194. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome sequencing based characterization of extensively drugresistant Mycobacterium tuberculosis isolates from Pakistan. PloS One. 2015;10(2):e0117771.
- 195. Li Q, Gao H, Zhang Z, Tian Y, Liu T, Wang Y, et al. Mutation and Transmission Profiles of Second-Line Drug Resistance in Clinical Isolates of Drug-Resistant Mycobacterium tuberculosis From Hebei Province, China. Front Microbiol. 2019;10:1838.
- 196. Yadav R, Saini A, Mankotia J, Khaneja R, Agarwal P, Sethi S. Genetic Characterization of Second-Line Drug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis from the Northern Region of India. J Epidemiol Glob Health. 2018;8(3-4):220-4.
- 197. Gardee Y, Dreyer AW, Koornhof HJ, Omar SV, da Silva P, Bhyat Z, et al. Evaluation of the GenoType MTBDRsl Version 2.0 Assay for Second-Line Drug Resistance Detection of Mycobacterium tuberculosis Isolates in South Africa. J Clin Microbiol. 2017;55(3):791-800.
- 198. Hu Y, Hoffner S, Wu L, Zhao Q, Jiang W, Xu B. Prevalence and Genetic Characterization of Second-Line Drug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis in Rural China. Antimicrob Agents Chemother. 2013;57(8):3857-63.
- 199. Nosova EY, Zimenkov DV, Khakhalina AA, Isakova AI, Krylova LY, Makarova MV, et al. A Comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a Microarray-Based Molecular Assay for the Detection of Drug Resistance in Clinical Mycobacterium tuberculosis Isolates in Moscow, Russia. PLOS ONE. 2016;11(11):e0167093.
- 200. Georghiou SB, Seifert M, Catanzaro D, Garfein RS, Valafar F, Crudu V, et al. Frequency and Distribution of Tuberculosis Resistance-Associated Mutations between Mumbai, Moldova, and Eastern Cape. Antimicrob Agents Chemother. 2016;60(7):3994-4004.
- 201. Engstrom A, Perskvist N, Werngren J, Hoffner SE, Jureen P. Comparison of clinical isolates and in vitro selected mutants reveals that tlyA is not a sensitive genetic marker for capreomycin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2011;66(6):1247-54.
- 202. Zimenkov DV, Antonova OV, Kuz'min AV, Isaeva YD, Krylova LY, Popov SA, et al. Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis. 2013;13:240.
- 203. Zhao LL, Chen Y, Liu HC, Xia Q, Wu XC, Sun Q, et al. Molecular Characterization of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China. Antimicrob Agents Chemother. 2014;58(4):1997-2005.
- 204. Suzuki Y, Katsukawa C, Tamaru A, Abe C, Makino M, Mizuguchi Y, et al. Detection of Kanamycin-Resistant Mycobacterium tuberculosis by Identifying Mutations in the 16S rRNA Gene. J Clin Microbiol. 1998;36(5):1220-5.
- 205. Krüüner A, Jureen P, Levina K, Ghebremichael S, Hoffner S. Discordant Resistance to Kanamycin and Amikacin in Drug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47(9):2971-3.
- 206. Evans J, Segal H. Novel multiplex allele-specific PCR assays for the detection of resistance to second-line drugs in Mycobacterium tuberculosis. J Antimicrob Chemother. 2010;65(5):897-900.

- 207. Khanna A, Raj VS, Tarai B, Sood R, Pareek PK, Upadhyay DJ, et al. Emergence and molecular characterization of extensively drug-resistant Mycobacterium tuberculosis clinical isolates from the Delhi Region in India. Antimicrob Agents Chemother. 2010;54(11):4789-93.
- 208. Leung KL, Yip CW, Yeung YL, Wong KL, Chan WY, Chan MY, et al. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs. J Appl Microbiol. 2010;109(6):2087-94.
- 209. Sirgel FA, Tait M, Warren RM, Streicher EM, Böttger EC, van Helden PD, et al. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist Larchmt N. 2012;18(2):193-7.
- 210. Brossier F, Pham A, Bernard C, Aubry A, Jarlier V, Veziris N, et al. Molecular Investigation of Resistance to Second-Line Injectable Drugs in Multidrug-Resistant Clinical Isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother. 2017;61(2):e01299-16.
- 211. Machado D, Coelho TS, Perdigão J, Pereira C, Couto I, Portugal I, et al. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis. Front Microbiol. 2017;8:711.

X. Anexos

Anexo 1. Mutaciones simples y múltiples en cepas resistentes a ciprofloxacina en GyrA y/o GyrB. Se muestra el número de cepas que presentaron la mutación simple o múltiple en la proteína, así como el número total de cepas resistentes/sensibles a ciprofloxacina para el presente estudio.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GyrA	E21Q	22	419	1	4
2	GyrA	E21Q, S95T, G668D	22	419	3	94
3	GyrA	E21Q, G247S, S95T, G668D	22	419	2	66
4	GyrA	A90V, E21Q, S95T, G668D	22	419	1	1
5	GyrA	D94G, E21Q, S95T, G668D	22	419	6	0
6	GyrA	D94H, E21Q, S95T, G668D	22	419	1	0
7	GyrA	H70R, D94A, E21Q, S95T, G668D	22	419	1	0
8	GyrA	A90V, E21Q, G247S, S95T, G668D	22	419	1	0
9	GyrA	D94N, E21Q, S95T, G668D	22	419	2	1
10	GyrA	D94G, E21Q, S95T, G247S, G668D	22	419	1	0
11	GyrA	D94A, E21Q, S95T, T267I, G668D	22	419	1	0
12	GyrA	A90V, E21Q, R292G, S95T, G668D	22	419	1	0
13	GyrA/ GyrB	E21Q, S95T, G668D/V301L	22	419	1	5

#R: Número de cepas resistentes; #S: Número de cepas sensibles

Anexo 2. Mutaciones únicas en cepas sensibles o presentes en una mayor proporción de cepas sensibles que en cepas resistentes a ciprofloxacina en GyrA y GyrB. Se muestra el número de cepas que presentaron la mutación en la proteína blanco, así como el número total de cepas resistentes/sensibles a ciprofloxacina para el presente estudio.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GyrA	E21Q	22	419	22	419
2	GyrA	S95T	22	419	21	258
3	GyrA	G247S	22	419	4	154
4	GyrA	G668D	22	419	21	338
5	GyrA	A288V	22	419	0	1
6	GyrA	S411A	22	419	0	1
7	GyrA	Y722C	22	419	0	1
8	GyrB	V301L	22	419	1	16
9	GyrB	G606S	22	419	0	5
10	GyrB	G280R	22	419	0	1
11	GyrB	I271M	22	419	0	13
12	GyrB	S661T	22	419	0	13
13	GyrB	E501D	22	419	0	1

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Anexo 3. Mutaciones simples y múltiples en cepas resistentes a kanamicina en GidB y *rrs*. Se muestra el número de cepas que presentaron la mutación simple y múltiple en la proteína/gen, así como el número total de cepas resistentes/sensibles a kanamicina para el presente estudio. El número total de cepas resistentes no considera las 18 cepas resistentes tanto a kanamicina como a capreomicina.

N°	Gen/Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GidB	E92D	21	402	4	21
2	GidB	L16R	21	402	1	75
3	GidB	L16R, P84L	21	402	2	8
4	GidB	L16R, L145F	21	402	2	9
5	GidB	L16R, G73R	21	402	3	1
6	GidB	R47W	21	402	2	1
7	GidB	S70R	21	402	1	0
8	GidB	T146K	21	402	1	0
9	rrs	A514T	21	402	1	2
10	GidB/rrs	E92D/ A1401G	21	402	3	0
11	Sin mutaciones		21	402	1	

#R: Número de cepas resistentes#S: Número de cepas sensiblesKanamicina (KM)

Anexo 4. Mutaciones únicas en cepas sensibles o presentes en una mayor proporción de cepas sensibles que en cepas resistentes a kanamicina en *rrs* y GidB. Se muestra el número de cepas que presentaron la mutación en la proteína, así como el número total de cepas resistentes/sensibles a kanamicina para el presente estudio. El número total de cepas resistentes no considera las 18 cepas resistentes tanto a kanamicina como a capreomicina.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	rrs	C492T	21	402	0	3
2	rrs	C513T	21	402	0	1
3	rrs	A514C	21	402	0	1
4	rrs	C517T	21	402	0	1
5	rrs	G878A	21	402	0	1
6	GidB	E92D	21	402	7	22
7	GidB	L16R	21	402	8	221
8	GidB	P84L	21	402	2	16
9	GidB	L145F	21	402	2	9
10	GidB	A138E	21	402	0	1
11	GidB	A138V	21	402	0	2
12	GidB	A167D	21	402	0	2
13	GidB	A80P	21	402	0	1
14	GidB	A80T	21	402	0	1

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
15	GidB	D67G	21	402	0	18
16	GidB	G117E	21	402	0	1
17	GidB	G117R	21	402	0	1
18	GidB	G37R	21	402	0	1
19	GidB	G73A	21	402	0	8
20	GidB	H48Y	21	402	0	3
21	GidB	L26F	21	402	0	2
22	GidB	L26S	21	402	0	1
23	GidB	L49R	21	402	0	1
24	GidB	L50R	21	402	0	36
25	GidB	L79W	21	402	0	16
26	GidB	L86F	21	402	0	1
27	GidB	L86R	21	402	0	1
28	GidB	L90R	21	402	0	15
29	GidB	N51K	21	402	0	1
30	GidB	P75S	21	402	0	2
31	GidB	P78L	21	402	0	9
32	GidB	R137W	21	402	0	1
33	GidB	R20P	21	402	0	4
34	GidB	R96L	21	402	0	11
35	GidB	V124A	21	402	0	1
36	GidB	V77G	21	402	0	44
37	GidB	V88A	21	402	0	1
38	GidB	W45S	21	402	0	2

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Kanamicina (KM)

Anexo 5. Mutaciones simples y múltiples en cepas resistentes a capreomicina en GidB, *rrs* y TlyA. Se muestra el número de cepas que presentaron la mutación múltiple y simple en el gen/proteína, así como el número total de cepas resistentes/sensibles a kanamicina para el presente estudio. El número total de cepas resistentes no considera las 18 cepas resistentes tanto a kanamicina como a capreomicina.

N°	Gen/Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GidB	L16R	12	411	1	145
2	GidB	L16R, L50R	12	411	1	35
3	GidB	N51K	12	411	1	0
4	GidB/TlyA	L16R, P84L/G232D	12	411	7	1
5	GidB/TlyA/ Rv3728	L90R/S228R/G636A	12	411	1	0
6	Sin mutación		12	411	1	

#R: Número de cepas resistentes
#S: Número de cepas sensibles

Capreomicina (CM)

Anexo 6. Mutaciones únicas en cepas sensibles o presentes en una mayor proporción de cepas sensibles que en cepas resistentes a capreomicina en GidB y Rv3728. Se muestra el número de cepas que presentaron la mutación en la proteína, así como el número total de cepas resistentes/sensibles a capreomicina para el presente estudio. El número total de cepas resistentes no considera las 18 cepas resistentes tanto a kanamicina como a capreomicina.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GidB	L16R	12	411	9	225
2	GidB	L50R	12	411	1	35
3	GidB	P84L	12	411	7	11
4	GidB	L90R	12	411	1	14
5	GidB	A138E	12	411	0	1
6	GidB	A138V	12	411	0	2
7	GidB	A167D	12	411	0	2
8	GidB	A80P	12	411	0	1
9	GidB	A80T	12	411	0	1
10	GidB	D67G	12	411	0	18
11	GidB	E92D	12	411	0	29
12	GidB	G117E	12	411	0	1
13	GidB	G117R	12	411	0	1
14	GidB	G37R	12	411	0	1
15	GidB	G73A	12	411	0	8
16	GidB	G73R	12	411	0	4
17	GidB	H48Y	12	411	0	3
18	GidB	L145F	12	411	0	11
19	GidB	L26F	12	411	0	2
20	GidB	L26S	12	411	0	1
21	GidB	L49R	12	411	0	1
22	GidB	L79W	12	411	0	15
23	GidB	L86F	12	411	0	1
24	GidB	L86R	12	411	0	1

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
25	GidB	L90R	12	411	0	14
26	GidB	P75S	12	411	0	2
27	GidB	P78L	12	411	0	9
28	GidB	R137W	12	411	0	1
29	GidB	R20P	12	411	0	4
30	GidB	R47W	12	411	0	3
31	GidB	R96L	12	411	0	11
32	GidB	S70R	12	411	0	1
33	GidB	T146K	12	411	0	1
34	GidB	V124A	12	411	0	1
35	GidB	V77G	12	411	0	44
36	GidB	V88A	12	411	0	1
37	GidB	W45S	12	411	0	2
38	Rv3728	A175G	12	411	0	2

#R: Número de cepas resistentes#S: Número de cepas sensibles

Capreomicina (CM)

Capreonnenna (CM)

Anexo 7. Mutaciones simples y múltiples en cepas resistentes en GidB y en *rrs*. Se muestra el número de cepas que presentaron la mutación múltiple y simple en el gen/proteína, así como el número total de cepas resistentes/sensibles a kanamicina y capreomicina para el presente estudio. El número total de cepas resistentes no considera las 21 cepas resistentes a kanamicina y las 12 cepas resistentes a capreomicina.

N °	Gen/Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	GidB	L16R	18	390	1	218
2	GidB	L16R, G73R	18	390	3	1
3	GidB	L16R, P78L	18	390	1	9
4	GidB	L16R, V124A	18	390	3	1
5	GidB	L79W	18	390	2	16
6	GidB	L90R	18	390	1	14
7	GidB	E92D	18	390	3	22
8	rrs/GidB	A1401G/ V124A	18	390	1	0
	Sin mutación		18	390	3	

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Kanamicina y capreomicina (KM-CM)

Anexo 8. Mutaciones únicas en cepas sensibles o presentes en una mayor proporción de cepas sensibles que en cepas resistentes a kanamicina-capreomicina en GidB y *rrs*. Se muestra el número de cepas que presentaron la mutación en la proteína/gen, así como el número total de cepas resistentes/sensibles a kanamicina-capreomicina para el presente estudio. El número total de cepas resistentes no considera las 21 cepas resistentes a kanamicina y las 12 cepas resistentes a capreomicina.

N°	Gen/Proteína	Mutación	# R	#S	#R con	#S con
1	Gen/110tema	mutación	evaluadas	evaluadas	mutación	mutación
1	rrs	C517T	18	390	0	1
2	rrs	G878A	18	390	0	1
3	rrs	C492T	18	390	0	3
4	rrs	C513T	18	390	0	1
5	GidB	L16R	18	390	1	218
6	GidB	P78L	18	390	1	9
7	GidB	L79W	18	390	2	16
8	GidB	L90R	18	390	1	14
9	GidB	G37R	18	390	0	1
10	GidB	W45S	18	390	0	2
11	GidB	H48Y	18	390	0	3
12	GidB	L50R	18	390	0	35
13	GidB	D67G	18	390	0	18
14	GidB	V77G	18	390	0	44
15	GidB	A80P	18	390	0	1
16	GidB	A80T	18	390	0	1
17	GidB	P84L	18	390	0	9
18	GidB	L86R	18	390	0	1
19	GidB	L86F	18	390	0	1
20	GidB	G117E	18	390	0	1
21	GidB	G117R	18	390	0	1
22	GidB	R137W	18	390	0	1
23	GidB	L145F	18	390	0	9
24	GidB	R20P	18	390	0	4
25	GidB	L26F	18	390	0	2
26	GidB	L26S	18	390	0	1
27	GidB	R47W	18	390	0	1
28	GidB	L49R	18	390	0	1
29	GidB	G73A	18	390	0	8
30	GidB	P75S	18	390	0	2
31	GidB	V88A	18	390	0	1
32	GidB	E92D	18	390	3	22
33	GidB	R96L	18	390	0	11
34	GidB	A138E	18	390	0	1

N°	Gen/Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
35	GidB	A138V	18	390	0	2
36	GidB	A167D	18	390	0	2
37	GidB	R96L	18	390	0	11

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Kanamicina-capreomicina (KM, CM)

Anexo 9. Mutaciones únicas en cepas sensibles a cicloserina en CycA y Alr. Se muestra el número de cepas que presentaron la mutación en la proteína, así como el número total de cepas resistentes/sensibles a cicloserina para el presente estudio.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
1	CycA	T435S	2	439	0	1
2	CycA	R477G	2	439	0	73
3	CycA	D201A	2	439	0	3
4	Alr	A200D	2	439	0	1
5	Alr	P32L	2	439	0	1
6	Alr	E140D	2	439	0	4

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Anexo 10. Mutaciones únicas en cepas sensibles a ácido paraaminosalicílico en ThyA. Se muestra el número de cepas que presentaron la mutación en la proteína, así como el número total de cepas resistentes/sensibles PAS para el presente estudio.

N°	Proteína	Mutación	#R evaluadas	#S evaluadas	#R con mutación	#S con mutación
2	ThyA	T202A	12	429	1	246
1	ThyA	V77L	12	429	0	1
2	ThyA	P92L	12	429	0	1
3	ThyA	D205Y	12	429	0	1

#R: Número de cepas resistentes

#S: Número de cepas sensibles

Anexo 11. Mutaciones en cepas resistentes a ciprofloxacina kanamicina, kanamicina-capreomicina, cicloserina y PAS en GyrA, GyrB, *rrs*, Eis, IdsA2, WhiB7, CycA, Alr y ThyA obtenidos de la base de datos PATRIC. Se muestra el lugar de procedencia de las cepas resistentes.

Gen/ Proteína	Mutaciones	País
Ciprofloxacina		
GyrA	E21Q	Rusia
GyrA	E21Q, S95T, G668D	Rusia, Sudáfrica
GyrA	A90V, E21Q, S95T, G668D	Sudáfrica
GyrA	A90V, E21Q, S95T, G668D, G247S	Sudáfrica
GyrA	D94H, E21Q, S95T, G668D	Sudáfrica
GyrB	A504T	Rusia
GyrA/GyrB	D94A/K526Q	Sudáfrica
Kanamicina		
rrs/GidB	A1398G/D132E	Irán
rrs/GidB	A1398G/W45R	Irán
IdsA2	T292P	Sudáfrica
rrs	T14G	Sudáfrica
Kanamicina-Capr	reomicina	
GidB	E92D/L44Q	Rusia
rrs/TlyA	A1398G/G145S	Irán
rrs/GidB	A1398G/E92D	Belarus, Corea del Sur, Irán
rrs	A1398G	Corea del Sur, Irán, Sudáfrica, Belarus
Eis	R37G	Belarus
IdsA2/rrs	T262A/A1398G	Sudáfrica
rrs/GidB	A927G, A1398G/E92D	Belarus
WhiB7/rrs/GidB	L27P/A1398G/E92D	Belarus
Eis/rrs/GidB	S83G/A511C/L16R	Belarus
Cicloserina		
CycA	T236A	Corea del Sur
CycA	P188A/Y388D	Rusia
Alr	Y388D	Belarus
Alr	R397C	Corea del Sur
Ácido paraaminos	salicílico	
ThyA	T22P	Corea del Sur
ThyA	F52S	Corea del Sur
ThyA	D81A, D117G	Corea del Sur
ThyA	E137G	Corea del Sur
ThyA	N134T	Corea del Sur

Anexo 12. Mutaciones previamente reportadas en cepas resistentes a fluoroquinolonas recopiladas a partir de la literatura.

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrB	M330I	India	Advani et al. (91)
ofloxacina	gyrA	E21Q	India	Advani et al. (91)
ofloxacina	gyrA	A90V	India	Advani et al. (91)
ofloxacina	gyrA	D94N	India	Advani et al. (91)
ofloxacina	gyrA	D94G	India	Advani et al. (91)
ofloxacina	gyrA	S95T	India	Advani et al. (91)
ofloxacina	gyrA	A384V	India	Advani et al. (91)
ofloxacina	gyrA	G668D	India	Advani et al. (91)
ciprofloxacina	gyrA	A90V	USA	Malik et al. (95)
ciprofloxacina	gyrA	D94G	USA	Malik et al. (95)
ciprofloxacina	gyrB	N538D-T546M	USA	Malik et al. (95)
ciprofloxacina	gyrB	N538D	USA	Malik et al. (95)
ofloxacina	gyrA/gyrB	G247S/D500N	USA	Malik et al. (95)
ofloxacina	gyrB	D500H	USA	Malik et al. (95)
ofloxacina	gyrA	A90V	USA	Malik et al. (95)
ofloxacina	gyrA	D94G	USA	Malik et al. (95)
ofloxacina	gyrB	N538D-T546M	USA	Malik et al. (95)
ofloxacina	gyrB	R485C-T539N	USA	Malik et al. (95)
ofloxacina	gyrB	N538D	USA	Malik et al. (95)
levofloxacina	gyrA/gyrB	G247S/D500N	USA	Malik et al. (95)
levofloxacina	gyrB	D500H	USA	Malik et al. (95)
levofloxacina	gyrA	A90V	USA	Malik et al. (95)
levofloxacina	gyrA	D94G	USA	Malik et al. (95)
levofloxacina	gyrB	N538D-T546M	USA	Malik et al. (95)
levofloxacina	gyrB	R485C-T539N	USA	Malik et al. (95)
levofloxacina	gyrB	N538D	USA	Malik et al. (95)
moxifloxacina	gyrB	D500H	USA	Malik et al. (95)
moxifloxacina	gyrA	A90V	USA	Malik et al. (95)
moxifloxacina	gyrA	D94G	USA	Malik et al. (95)
moxifloxacina	gyrB	N538D-T546M	USA	Malik et al. (95)
moxifloxacina	gyrB	R485C-T539N	USA	Malik et al. (95)
moxifloxacina	gyrB	N538D	USA	Malik et al. (95)
ofloxacina	eccC5	V762G	USA	Eilertson et al. (97)
ofloxacina	gyrA	A90V	USA	Eilertson et al. (97)
ofloxacina	gyrA	D94G-D94N	USA	Eilertson et al. (97)
ofloxacina	gyrA	D94G	USA	Eilertson et al. (97)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	D94N	USA	Eilertson et al. (97)
ofloxacina	gyrA	S91P	USA	Eilertson et al. (97)
ofloxacina	gyrB	N538I	USA	Eilertson et al. (97)
ofloxacina	gyrA/gyrB	A90V/D500H	USA	Eilertson et al. (97)
ofloxacina	gyrA/gyrB	S91P-D94G/T539N	USA	Eilertson et al. (97)
ciprofloxacina	gyrA	S95T-I92M	Túnez	Soudani et al. (151)
ciprofloxacina	gyrA	S95T	Túnez	Soudani et al. (151)
ciprofloxacina	gyrA	S95T-A90L	Túnez	Soudani et al. (151)
ofloxacina	gyrA	A90V	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94A	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94G	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94T	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94A	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94Y	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	S91P	Irán	Arjomandzadegan et al. (152)
ofloxacina	gyrA	A90V	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94A	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94G	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94T	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94A	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	D94Y	Belarus	Arjomandzadegan et al. (152)
ofloxacina	gyrA	S91P	Belarus	Arjomandzadegan et al. (152)
moxifloxacina	gyrB	N510D	Argelia	Veziris et al. (153)
ofloxacina	gyrA	D94G	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	D94A	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	D94N	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	D94Y	Rusia	Chernyaeva et al. (154)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	A90V	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	G88C	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	S91P	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	S91L	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	A90V/S512L	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	D94N/A543V	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	A543V	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	S512L	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	T539N	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	E540A	Rusia	Chernyaeva et al. (154)
ofloxacina	gyrA	D94G	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	A90V	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	S91P	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	S69T-D94A	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	D94A	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	A90V-D94A	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	A90V-S91P	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	A90V-D94G	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	S91P-D94G	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	Q60R	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	R68G	República de Corea	Jnawali et al. (155)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	D94H	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	D94N	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	D89N	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	D94Y	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	A90V-S91A	República de Corea	Jnawali et al. (155)
ofloxacina	gyrA	D94G	Nepal	Poudel et al. (156)
ofloxacina	gyrA	S91P	Nepal	Poudel et al. (156)
ofloxacina	gyrA	D94N	Nepal	Poudel et al. (156)
ofloxacina	gyrA	D94A	Nepal	Poudel et al. (156)
ofloxacina	gyrA	D94Y	Nepal	Poudel et al. (156)
ofloxacina	gyrA	D94H	Nepal	Poudel et al. (156)
ofloxacina	gyrA	A90V	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	D94A	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	D94G	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	D94N	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	D94Y	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	G88C	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	S91P	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	H70R	Sudáfrica	Streicher et al. (157)
ofloxacina	gyrA	H52Q	Sudáfrica	Streicher et al. (157)
Ciprofloxacina	gyrA	D94V	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	S91P	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	A90V	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	D94A	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	D94Y	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	D94G	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	D94N	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	G88C	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	A90V-D94V	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	A90V-D94A	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	A90V-S91P	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA/gyrB	D94G/S486F	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA/gyrB	A90V/T539N	Japón	Suzuki et al. (158)
Ciprofloxacina	gyrA	A90V	Irán	Tahmasebi et al. (159)

Droga	Gen	Cambio de aa	Región	Autor
Ciprofloxacina	gyrA	D94G	Irán	Tahmasebi et al. (159)
Ciprofloxacina	gyrA	D94N	Irán	Tahmasebi et al. (159)
Ciprofloxacina	gyrA	D94Y	Irán	Tahmasebi et al. (159)
Ciprofloxacina	gyrA	S91P-D94N	Irán	Tahmasebi et al. (159)
ofloxacina	gyrA	D94G	China	Yuan et al. (160)
ofloxacina	gyrA	D94N	China	Yuan et al. (160)
ofloxacina	gyrA	A90V	China	Yuan et al. (160)
ofloxacina	gyrB	D500H	China	Yuan et al. (160)
ofloxacina	gyrB	E540D	China	Yuan et al. (160)
Ciprofloxacina	gyrA	A90V-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	A90V	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	S91P-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	A90V-S91P-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	A90V-S95T-L96P	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94G-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94Y-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94A-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94N	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94N-S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	D94G-S95T- D111N	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	S95T	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrB	A471V	Pakistán	Ali et al. (161)
Ciprofloxacina	gyrA	A90V	Japón	Ando et al. (162)
Ciprofloxacina	gyrA	D94G	Japón	Ando et al. (162)
Ciprofloxacina	gyrA	D94A	Japón	Ando et al. (162)
Levofloxacina	gyrA	A90V	Japón	Ando et al. (162)
Levofloxacina	gyrA	D94G	Japón	Ando et al. (162)
Levofloxacina	gyrA	D94A	Japón	Ando et al. (162)
Levofloxacina	gyrA	D94Y	Japón	Ando et al. (162)
Moxifloxacina	gyrA	A90V	USA	El Sahly et al. (163)
Moxifloxacina	gyrA	D94H	USA	El Sahly et al. (163)
Moxifloxacina	gyrA	D94G	USA	El Sahly et al. (163)
Moxifloxacina	gyrA	D94A	USA	El Sahly et al. (163)
ofloxacina	gyrA	A90V	Taiwán	Huang et al. (164)
ofloxacina	gyrA	S91P	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94A	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94N	Taiwán	Huang et al. (164)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	D94G	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94Y	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94G-D94Y	Taiwán	Huang et al. (164)
ofloxacina	gyrA	A90V-D94A	Taiwán	Huang et al. (164)
ofloxacina	gyrA	A90V-D94G	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94A-D94N	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94A-D94G	Taiwán	Huang et al. (164)
ofloxacina	gyrA	G88C	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D89N	Taiwán	Huang et al. (164)
ofloxacina	gyrA	D94Y	Taiwán	Huang et al. (164)
ciprofloxacina	gyrA	A90V	China	Hu et al. (165)
ciprofloxacina	gyrA	D94A	China	Hu et al. (165)
ciprofloxacina	gyrA	D94N	China	Hu et al. (165)
ciprofloxacina	gyrA	A90V-D94A	China	Hu et al. (165)
ciprofloxacina	gyrA	A90V-D94N	China	Hu et al. (165)
ciprofloxacina	gyrA	A74S-D94N	China	Hu et al. (165)
ofloxacina	gyrA	A90V	China	Hu et al. (165)
ofloxacina	gyrA	D94N	China	Hu et al. (165)
ofloxacina	gyrA	D94A	China	Hu et al. (165)
ofloxacina	gyrA	A90V	China	Hu et al. (165)
ofloxacina	gyrA	A90V-D94N	China	Hu et al. (165)
ofloxacina	gyrA	A90V-D94N	China	Hu et al. (165)
levofloxacina	gyrA	D94N	China	Hu et al. (165)
levofloxacina	gyrA	D94A	China	Hu et al. (165)
levofloxacina	gyrA	A74S-D94N	China	Hu et al. (165)
ofloxacina	gyrA	D94G	India	Singh et al. (166)
ofloxacina	gyrA	D94V	India	Singh et al. (166)
ofloxacina	gyrA	D94Y	India	Singh et al. (166)
ofloxacina	gyrA	D94Y-R98L	India	Singh et al. (166)
ofloxacina	gyrA	D94V	India	Singh et al. (166)
ofloxacina	gyrA	S95T	India	Singh et al. (166)
ofloxacina	gyrA	D94G	India	Singh et al. (166)
ofloxacina	gyrA	G88R-D94V	India	Singh et al. (166)
ofloxacina	gyrA	T80A-A90E	Francia	Brossier et al. (167
ofloxacina	gyrA	T80A-A90G-D94G	Francia	Brossier et al. (167
ofloxacina	gyrA	G88A	Francia	Brossier et al. (167
ofloxacina	gyrA	G88C	Francia	Brossier et al. (167
ofloxacina	gyrA	A90V	Francia	Brossier et al. (167
ofloxacina	gyrA	D94G	Francia	Brossier et al. (167
ofloxacina	gyrA	D94N	Francia	Brossier et al. (167

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	D94A	Francia	Brossier et al. (167)
ofloxacina	gyrA	D94H	Francia	Brossier et al. (167)
ofloxacina	gyrA	D94G-A90V	Francia	Brossier et al. (167)
ofloxacina	gyrA	D94G	Vietnam	Kiet et al. (168)
ofloxacina	gyrA	D94A	Vietnam	Kiet et al. (168)
ofloxacina	gyrA	A90V	Vietnam	Kiet et al. (168)
ofloxacina	gyrA	A74S	China	Lau et al. (169)
moxifloxacina	gyrA	A74S	China	Lau et al. (169)
levofloxacina	gyrA	H70R	China	Yin et al. (170)
levofloxacina	gyrA	A90V	China	Yin et al. (170)
levofloxacina	gyrA	S91A	China	Yin et al. (170)
levofloxacina	gyrA	D94G	China	Yin et al. (170)
levofloxacina	gyrA	D94A	China	Yin et al. (170)
levofloxacina	gyrA	D94N	China	Yin et al. (170)
levofloxacina	gyrA	A90V-D94A	China	Yin et al. (170)
ofloxacina	gyrA	A90V	Filipinas	Bravo et al. (171)
ofloxacina	gyrA	A90V	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	A90V/T539P	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	A90V/D500A	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	A90V/N538T	Vietnam	Duong et al. (172)
ofloxacina	gyrA	A90V-D94G	Vietnam	Duong et al. (172)
ofloxacina	gyrA	A90V-D94A	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	A90V- D94A/N538T	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	A90V-S91P-D94G- D94A/N538T	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94A	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94G	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	D94G-N538T	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94G-D94A	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94H	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94N	Vietnam	Duong et al. (172)
ofloxacina	gyrA/gyrB	D94A/D500N	Vietnam	Duong et al. (172)
ofloxacina	gyrA	D94Y	Vietnam	Duong et al. (172)
ofloxacina	gyrA	S91P	Vietnam	Duong et al. (172)
ofloxacina	gyrA	S91P-D94G-D94A	Vietnam	Duong et al. (172)
ofloxacina	gyrA	A90V-G88A	Vietnam	Duong et al. (172)
ofloxacina	gyrB	D500N	Vietnam	Duong et al. (172)
ofloxacina	gyrB	E540V	Vietnam	Duong et al. (172)
ofloxacina	gyrB	S486F	Vietnam	Duong et al. (172)
ofloxacina	gvrB	E540D	Vietnam	Duong et al. (172)

GengyrBgyrAgyrA	Cambio de aa D500H-G509A D94G	Región Vietnam Alemania	Autor Duong et al. (172) Hillemann et al
a gyrB a gyrA a gyrA	D500H-G509A D94G	Vietnam Alemania	Duong et al. (172) Hillemann et al
gyrA gyrA	D94G	Alemania	Hillemann et al
gyrA			(173)
a gyrA D94A Aleman		Alemania	Hillemann et al. (173)
gyrA	A90V	Alemania	Hillemann et al. (173)
gyrA	D94N	Alemania	Hillemann et al. (173)
gyrA	S91P	Alemania	Hillemann et al. (173)
gyrA	A90V	Alemania	Hillemann et al. (173)
floxacina gyrA S91P Portug		Portugal	Perdigao et al. (99)
oxacina gyrA D94A Portug		Portugal	Perdigao et al. (99)
gyrA	D94G	Portugal	Perdigao et al. (99)
gyrA	G88C	Rusia	Mokrousov et al. (174)
gyrA	A90V	Rusia	Mokrousov et al. (174)
gyrA	D94G	Rusia	Mokrousov et al. (174)
gyrA	D94A	Rusia	Mokrousov et al. (174)
gyrA	D94N	Rusia	Mokrousov et al. (174)
gyrA	D94Y	Rusia	Mokrousov et al. (174)
gyrA	A90V-D94G**	Rusia	Mokrousov et al. (174)
gyrA	D94N-D94G**	Rusia	Mokrousov et al. (174)
gyrA	D94N-D94G- D94Y**	Rusia	Mokrousov et al. (174)
gyrA	A90V	China	Sun et al. (175)
loxacina gyrA S91P China		China	Sun et al. (175)
ofloxacina gyrA D94N China		China	Sun et al. (175)
ofloxacina gyrA D94Y Chin		China	Sun et al. (175)
ofloxacina gyrA D94H China		China	Sun et al. (175)
gvrA	D94G	China	Sun et al. (175)
gvrA	D94A	China	Sun et al. (175)
gyrA	A90V	Vietnam	van Doorn et al. (176)
	a gyrA gyrA gyrA gyrA gyrA gyrA gyrA gyrA	AgyrAA90VAgyrAD94NAgyrAS91PAgyrAA90VBgyrAS91PgyrAD94AgyrAD94AgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94GgyrAD94AgyrAD94AgyrAD94AgyrAD94NgyrAD94NgyrAA90V-D94G**agyrAgyrAD94N-D94GagyrAgyrAD94N-D94G**agyrAbyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94NgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrAD94AgyrA<	ngyrAA90VAlemaniagyrAD94NAlemaniagyrAS91PAlemaniagyrAS91PPortugalgyrAS91PPortugalgyrAD94APortugalgyrAD94GPortugalgyrAG88CRusiagyrAD94GRusiagyrAD94GRusiagyrAD94GRusiagyrAD94GRusiagyrAD94GRusiagyrAD94GRusiagyrAD94GRusiagyrAD94ARusiagyrAD94ARusiagyrAD94ARusiagyrAD94ARusiagyrAD94ARusiagyrAD94NRusiagyrAD94N-D94G**RusiagyrAD94N-D94G**RusiagyrAA90VChinagyrAS91PChinagyrAD94NChinagyrAD94YChinagyrAD94YChinagyrAD94YChinagyrAD94HChinagyrAD94HChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChinagyrAD94AChina

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	A90V	Vietnam	van Doorn et al. (176)
ofloxacina	gyrA	G88A	Vietnam	van Doorn et al. (176)
ofloxacina	gyrA	D94G	Vietnam	van Doorn et al. (176)
ofloxacina	gyrA	S91P	Vietnam	van Doorn et al. (176)
ofloxacina	gyrA	D94A	Vietnam	van Doorn et al. (176)
ofloxacina	gyrA	D94Y	China	Chan et al. (177)
ofloxacina	gyrA	D94A	China	Chan et al. (177)
ofloxacina	gyrA	D94G	China	Chan et al. (177)
ofloxacina	gyrA	A90V-P102H	China	Kam at al. (178)
ofloxacina	gyrA	D94A	China	Kam at al. (178)
ofloxacina	gyrA	A90V	China	Kam at al. (178)
ofloxacina	gyrA	S91P	China	Kam at al. (178)
ofloxacina	gyrA	A126R	China	Kam at al. (178)
ofloxacina	gyrA	D94H	China	Kam at al. (178)
ofloxacina	gyrA	D94G	China	Kam at al. (178)
ofloxacina	gyrA	D94Y	China	Kam at al. (178)
moxifloxacina	gyrA	A90V-P102H	China	Kam at al. (178)
moxifloxacina	gyrA	D94A	China	Kam at al. (178)
moxifloxacina	gyrA	A90V	China	Kam at al. (178)
moxifloxacina	gyrA	S91P	China	Kam at al. (178)
moxifloxacina	gyrA	A126R	China	Kam at al. (178)
moxifloxacina	gyrA	D94H	China	Kam at al. (178)
moxifloxacina	gyrA	D94G	China	Kam at al. (178)
moxifloxacina	gyrA	D94Y	China	Kam at al. (178)
ofloxacina	gyrA	S95T	India	Siddiqi et al. (179)
ofloxacina	gyrA	D94G-S95T	India	Siddiqi et al. (179)
ofloxacina	gyrA	D94A-S95T	India	Siddiqi et al. (179)
ofloxacina	gyrA	A90V-S95T	India	Siddiqi et al. (179)
ofloxacina	gyrA	S91P-S95T	India	Siddiqi et al. (179)
ofloxacina	gyrA	A90V	China	Williams et al. (180)
ofloxacina	gyrA	S90P	China	Williams et al. (180)
ofloxacina	gyrA	S91P	China	Williams et al. (180)
ofloxacina	gyrA	D94G	China	Williams et al. (180)
ofloxacina	gyrA	D94N	China	Williams et al. (180)
ciprofloxacina	gyrA	A90V	USA	Xu et al. (181)
ciprofloxacina	gyrA	D94H	USA	Xu et al. (181)
ciprofloxacina	gyrA	D94N	USA	Xu et al. (181)

Droga	Gen	Cambio de aa	Región	Autor
ciprofloxacina	gyrA	D94Y	USA	Xu et al. (181)
ciprofloxacina	gyrA	D94G	USA	Xu et al. (181)
ciprofloxacina	gyrA	D84G	España	Escribano et al. (182)
ciprofloxacina	gyrA	S95T	España	Escribano et al. (182)
moxifloxacina	gyrA	D84G	España	Escribano et al. (182)
moxifloxacina	gyrA	S95T	España	Escribano et al. (182)
levofloxacina	gyrA	D84G	España	Escribano et al. (182)
levofloxacina	gyrA	S95T	España	Escribano et al. (182)
ofloxacina	gyrA	D84G	España	Escribano et al. (182)
ofloxacina	gyrA	S95T	España	Escribano et al. (182)
gatifloxacina	gyrA	D84G	España	Escribano et al. (182)
gatifloxacina	gyrA	S95T	España	Escribano et al. (182)
ofloxacina	gyrB	D500A	Georgia	Pantel et al. (58)
ofloxacina	gyrB	N538T	Sri Lanka	Pantel et al. (58)
ofloxacina	gyrB	T539P	Túnez	Pantel et al. (58)
ofloxacina	gyrB	E540V	Argelia	Pantel et al. (58)
levofloxacina	gyrA	A90V	Brasil	Matsui et al. (94)
levofloxacina	gyrA	S91P	Brasil	Matsui et al. (94)
levofloxacina	gyrA	D94G	Brasil	Matsui et al. (94)
levofloxacina	gyrA	D94N	Brasil	Matsui et al. (94)
levofloxacina	gyrA/gyrB	D94N/K526K	Brasil	Matsui et al. (94)
levofloxacina	gyrA	N499D	Brasil	Matsui et al. (94)
levofloxacina	gyrA	G88A	Brasil	Matsui et al. (94)
levofloxacina	gyrA	D94G	Brasil	Matsui et al. (94)
levofloxacina	gyrB	D499V	Brasil	Matsui et al. (94)
levofloxacina	gyrB	N499D	Brasil	Matsui et al. (94)
ofloxacina	gyrA	A90V	India	Gupta et al. (183)
ofloxacina	gyrA	D94G	India	Gupta et al. (183)
ofloxacina	gyrA	D94N	India	Gupta et al. (183)
ofloxacina	gyrA	D94Y	India	Gupta et al. (183)
ofloxacina	gyrA	A90V-D94G	India	Gupta et al. (183)
ofloxacina	gyrB	D500A	India	Gupta et al. (183)
ofloxacina	gyrB	D472V	India	Gupta et al. (183)
ofloxacina	gyrA/gyrB	S91P/N538D	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	D94G/N538D	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	D94H/N538D	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	D94A/N538D	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	A90V/N538D	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	D94A	India	Rufai et al. (184)
ofloxacina	gyrA/gyrB	A90V-D94G	India	Rufai et al. (184)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrB	R446C	Tanzania	Katale et al. (185)
ofloxacina	gyrB	K247N	Taiwán	Wang et al. (143)
levofloxacina	gyrA	A90V	China	Hameed et al. (93)
levofloxacina	gyrA	S91P	China	Hameed et al. (93)
levofloxacina	gyrA	D94Y	China	Hameed et al. (93)
levofloxacina	gyrA	D94H	China	Hameed et al. (93)
levofloxacina	gyrA	D94N	China	Hameed et al. (93)
levofloxacina	gyrA	D94G	China	Hameed et al. (93)
levofloxacina	gyrA	D94A	China	Hameed et al. (93)
levofloxacina	gyrA	P123S-D94N	China	Hameed et al. (93)
levofloxacina	gyrA	A126E	China	Hameed et al. (93)
levofloxacina	gyrA	M127K	China	Hameed et al. (93)
levofloxacina	gyrA	P621L-D94G	China	Hameed et al. (93)
levofloxacina	gyrA	D756E-A90V	China	Hameed et al. (93)
levofloxacina	gyrA	E21H-S91P	China	Hameed et al. (93)
levofloxacina	gyrA	L105R	China	Hameed et al. (93)
levofloxacina	gyrA	A204V-D94G	China	Hameed et al. (93
levofloxacina	gyrA	G809A-D94H	China	Hameed et al. (93
levofloxacina	gyrB	D79N-T500N	China	Hameed et al. (93
levofloxacina	gyrB	G168E-G512R	China	Hameed et al. (93
levofloxacina	gyrB	D461H	China	Hameed et al. (93)
levofloxacina	gyrB	R446L-T500A	China	Hameed et al. (93)
levofloxacina	gyrB	N499S	China	Hameed et al. (93)
levofloxacina	gyrB	N499S-T500A	China	Hameed et al. (93)
levofloxacina	gyrB	T500A	China	Hameed et al. (93)
levofloxacina	gyrB	T500N	China	Hameed et al. (93)
levofloxacina	gyrB	G510A	China	Hameed et al. (93)
levofloxacina	gyrB	G512R	China	Hameed et al. (93)
levofloxacina	gyrB	G520A	China	Hameed et al. (93)
levofloxacina	gyrB	R446L-G510A	China	Hameed et al. (93)
levofloxacina	gyrB	A504T	China	Hameed et al. (93)
moxifloxacina	gyrA	A90V	China	Hameed et al. (93)
moxifloxacina	gyrA	S91P	China	Hameed et al. (93)
moxifloxacina	gyrA	D94Y	China	Hameed et al. (93
moxifloxacina	gyrA	D94N	China	Hameed et al. (93
moxifloxacina	gyrA	D94G	China	Hameed et al. (93
moxifloxacina	gyrA	D94A	China	Hameed et al. (93
moxifloxacina	gyrA	P123S-D94N	China	Hameed et al. (93)
moxifloxacina	gyrA	A126E	China	Hameed et al. (93)
moxifloxacina	gyrA	M127K	China	Hameed et al. (93)

Droga	Gen	Cambio de aa	Región	Autor
moxifloxacina	gyrA	P621L-D94G	China	Hameed et al. (93)
moxifloxacina	gyrA	D756E-A90V	China	Hameed et al. (93)
moxifloxacina	gyrA	D151T	China	Hameed et al. (93)
moxifloxacina	gyrA	V165A	China	Hameed et al. (93)
moxifloxacina	gyrB	D79N-T500N	China	Hameed et al. (93)
moxifloxacina	gyrB	G168E-G512R	China	Hameed et al. (93)
moxifloxacina	gyrB	D461H	China	Hameed et al. (93)
moxifloxacina	gyrB	R446L-T500A	China	Hameed et al. (93)
moxifloxacina	gyrB	N499S	China	Hameed et al. (93)
moxifloxacina	gyrB	N499S-T500A	China	Hameed et al. (93)
moxifloxacina	gyrB	T500A	China	Hameed et al. (93)
moxifloxacina	gyrB	T500N	China	Hameed et al. (93)
moxifloxacina	gyrB	G510A	China	Hameed et al. (93)
moxifloxacina	gyrB	G512R	China	Hameed et al. (93)
moxifloxacina	gyrB	G520A	China	Hameed et al. (93)
moxifloxacina	gyrB	D515G	China	Hameed et al. (93)
moxifloxacina	gyrB	R631S-G512R	China	Hameed et al. (93)
ofloxacina	gyrA	A90V	Georgia	Bablishvili et al. (186)
ofloxacina	gyrA	D94G	Georgia	Bablishvili et al. (186)
ofloxacina	gyrA/gyrB	A90V/A543T	Georgia	Bablishvili et al. (186)
ofloxacina	gyrB	N538T	Georgia	Bablishvili et al. (186)
ofloxacina	gyrB	R485C	Georgia	Bablishvili et al. (186)
ofloxacina	gyrB	A543V	Georgia	Bablishvili et al. (186)
ofloxacina	gyrB	R485H	Georgia	Bablishvili et al. (186)
moxifloxacina	gyrA	G88C	Ghana	Osei-Wusu et al. (187)
ofloxacina	gyrA	D94A	Ucrania	Daum et al. (188)
ofloxacina	gyrA	D94G	Ucrania	Daum et al. (188)
ofloxacina	gyrA	D94H	Ucrania	Daum et al. (188)
ofloxacina	gyrA	D94N	Ucrania	Daum et al. (188)
ofloxacina	gyrA	S91P-D94A	Ucrania	Daum et al. (188)
ofloxacina	gyrA	G88A	Ucrania	Daum et al. (188)
ofloxacina	gyrA	A90V	Ucrania	Daum et al. (188)
ofloxacina	gyrB	E501V	Ucrania	Daum et al. (188)
ofloxacina	gyrB	A504V	Ucrania	Daum et al. (188)

Droga	Gen	Cambio de aa	Región	Autor
ofloxacina	gyrA	A90V	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	A90T	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	S91P	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	D94A	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	D94N	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	D94H	Marruecos	Oudghiri et al. (189)
ofloxacina	gyrA	D94G	India	Rufai at al. (190)
ofloxacina	gyrA	D94A	India	Rufai at al. (190)
ofloxacina	gyrA	D94H	India	Rufai at al. (190)
ofloxacina	gyrA	S91P	India	Rufai at al. (190)
ofloxacina	gyrA	A90V	India	Rufai at al. (190)
ofloxacina	gyrA	D94G-D94H	India	Rufai at al. (190)
ofloxacina	gyrA	A90V-D94A	India	Rufai at al. (190)
ofloxacina	gyrA	D94A-D94G	India	Rufai at al. (190)
ofloxacina	gyrA	A90V-D94G	India	Rufai at al. (190)
ofloxacina	gyrA	D94G	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrA	A90V	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrA	S91P	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrA	D94S	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrA	D94Y	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrB	D461H-G470C	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrB	D461N	Tunisia	Bouzouita et al. (191)
ofloxacina	gyrA/gyrB	D94A/D461N	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA	D94G	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA	A90V	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA	S91P	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA	D94S	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA	D94Y	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrB	D461H-G470C	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrB	D461N	Tunisia	Bouzouita et al. (191)
levofloxacina	gyrA/gyrB	D94A/D461N	Tunisia	Bouzouita et al. (191)
moxifloxacina	gyrB	E540D	España	Cancino-Muñoz et al. (192)
moxifloxacina	gyrA	D94N	China	Chen et al. (119)
moxifloxacina	gyrA	A90V-D94A	China	Chen et al. (119)
moxifloxacina	gyrA	A90V-D94G	China	Chen et al. (119)
moxifloxacina	gyrA	A90V-D94N	China	Chen et al. (119)
moxifloxacina	gyrA	A90V-D94H	China	Chen et al. (119)
levofloxacina	gyrA	D94G	China	Chen et al. (119)
levofloxacina	gyrA	D94N	China	Chen et al. (119)
levofloxacina	gyrA	D94Y	China	Chen et al. (119)

Droga	Gen	Cambio de aa	Región	Autor
levofloxacina	gyrA	A90V-D94A	China	Chen et al. (119)
levofloxacina	gyrA	A90V-D94G	China	Chen et al. (119)
levofloxacina	gyrA	A90V-D94N	China	Chen et al. (119)
levofloxacina	gyrA	A90V-D94H	China	Chen et al. (119)
levofloxacina	gyrA	A90V-D94Y	China	Chen et al. (119)
levofloxacina	gyrA	S91P-D94A	China	Chen et al. (119)
ofloxacina	gyrA	R292G	Argentina	Eldholm et al. (120)
ofloxacina	gyrA	A288D	Austria, Romania y Alemania	Fiebig et al. (193)
ciprofloxacina	gyrA	E21H-A288D	Pakistán	Ali et al. (194)
ciprofloxacina	gyrA/gyrB	E21H/S447F	Pakistan	Ali et al. (194)
ofloxacina	gyrB	E501D	Nigeria	Senghore et al. 2017
levofloxacina	gyrA	G88C	Irán	Kardan-Yamchi et al. (102)
levofloxacina	gyrA	D94G	Irán	Kardan-Yamchi et al. (102)
levofloxacina	gyrA	S91P	Iran	Kardan-Yamchi et al. (102)
Moxifloxacina	gyrA	G88C	Iran	Kardan-Yamchi et al. (102)
Moxifloxacina	gyrA	D94G	Iran	Kardan-Yamchi et al. (102)
Moxifloxacina	gyrA	S91P	Iran	Kardan-Yamchi et al. (102)
Ofloxacina	gyrB	S447F	China	Li et al. (195)

*Aminoácido (aa)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
amk	rrs	A1401G	Irán	Kardan-Yamchi et al. (102)
amk	rrs	G1484T	Irán	Kardan-Yamchi et al. (102)
kan	rrs	A1401G	Irán	Kardan-Yamchi et al. (102)
kan	rrs	G1484T	Irán	Kardan-Yamchi et al. (102)
kan	eis	G-10A	Irán	Kardan-Yamchi et al. (102)
kan	eis	C-12T	Irán	Kardan-Yamchi et al. (102)
kan	eis	C-15G	Irán	Kardan-Yamchi et al. (102)
cap	rrs	A1401G	Irán	Kardan-Yamchi et al. (102)
cap	rrs	G1484T	Irán	Kardan-Yamchi et al. (102)
amk	rrs	A1401G	Portugal	Perdigão et al. (103)
amk	rrs	C517T	Portugal	Perdigão et al. (103)
amk	eis	C-14T	Portugal	Perdigão et al. (103)
cap	idsA2promoter	A-65G	Portugal	Perdigão et al. (103)
cap	rrs	A1401G	Portugal	Perdigão et al. (103)
cap	rrs	G1484T	Portugal	Perdigão et al. (103)
cap	rrs	C1402A	Portugal	Perdigão et al. (103)
kan	rrs	A1401G	India	Yadav et al. (196)
cap	rrs	A1401G	India	Yadav et al. (196)
amk	rrs	A1401G	India	Yadav et al. (196)
cap	rrs	A1401G	Georgia	Bablishvili et al. (186)
kan, amk, cap	rrs	A1401G	Sudáfrica	Gardee et al. (197)
kan, amk, cap, vio	rrs	G1484T	Sudáfrica	Gardee et al. (197)
kan	eis	C-14T	Sudáfrica	Gardee et al. (197)
amk	rrs	A1401G	China	Hu et al. (198)
kan	rrs	A1401G	China	Hu et al. (198)

Anexo 13. Mutaciones en cepas resistentes a inyectables de segunda línea y a ácido paraaminosalicílico recopiladas a partir de la literatura.

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
cap	rrs	A1401G	China	Hu et al. (198)
kan	rrs	A1401G	Rusia	Nosova et al. (199)
kan	rrs	G1484T	Rusia	Nosova et al. (199)
kan	rrs	C-12T	Rusia	Nosova et al. (199)
kan	rrs	C-14T	Rusia	Nosova et al. (199)
kan	rrs	G-10A	Rusia	Nosova et al. (199)
kan	rrs	G-37T	Rusia	Nosova et al. (199)
amk	rrs	A1401G	Rusia	Nosova et al. (199)
amk	rrs	G1484T	Rusia	Nosova et al. (199)
amk	rrs	C-12T	Rusia	Nosova et al. (199)
amk	rrs	C-14T	Rusia	Nosova et al. (199)
amk	rrs	G-10A	Rusia	Nosova et al. (199)
amk	rrs	G-37T	Rusia	Nosova et al. (199)
kan	rrs	A1401G	Mumbai, Moldova, Eastern Cape	Georghiou et al. (200)
amk	rrs	A1401G	Mumbai, Moldova, Eastern Cape	Georghiou et al. (200)
cap	rrs	A1401G	Mumbai, Moldova, Eastern Cape	Georghiou et al. (200)
kan	eis	G-10A	Francia	Brossier et al. (67)
kan	eis	C-12T	Francia	Brossier et al. (67)
kan	eis	C-14T	Francia	Brossier et al. (67)
kan	eis	G-37T	Francia	Brossier et al. (67)
kan, cap	eis	G-10A	Francia	Brossier et al. (67)
kan, cap	eis	G-37T	Francia	Brossier et al. (67)
kan, cap	rrs	C1402T	Francia	Brossier et al. (67)
kan, amk, cap	rrs	C-14T	Francia	Brossier et al. (67)
kan, amk, cap	rrs	G1484T	Francia	Brossier et al. (67)
kan, amk, cap	rrs	G1402T	Francia	Brossier et al. (67)
kan, amk, cap	rrs/eis	A1401G/C- 12T	Francia	Brossier et al. (67)
kan, amk, cap	rrs	A1401G	Francia	Brossier et al. (67)
kan, amk, cap	<i>rrs</i> /eis	A1401G/G- 10A	Francia	Brossier et al. (67)
amk	rrs	A1401G	Suecia	Engstrom et al. (201)
cap	rrs	A1401G	Suecia	Engstrom et al. (201)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
kan	rrs	A1401G	Suecia	Engstrom et al. (201)
kan	<i>rrs</i> /eis	A1401G/G-6T	Suecia	Engstrom et al. (201)
kan	rrs/eis	A1401G/C- 12T	Suecia	Engstrom et al. (201)
kan	rrs	A514C- A1401G	Suecia	Engstrom et al. (201)
kan	rrs	A514T- A1401G	Suecia	Engstrom et al. (201)
kan	rrs	G891A- C1402T	Suecia	Engstrom et al. (201)
kan	rrs	G891A- A1401G	Suecia	Engstrom et al. (201)
cap	tlyA	N236K	Suecia	Engstrom et al. (201)
kan	rrs	A1401G	Tailandia	Sowajassatakul et al. (10)
kan	eis	C-14T	Tailandia	Sowajassatakul et al. (10)
kan	eis	G-37T	Tailandia	Sowajassatakul et al. (10)
kan, cap	tlyA	WT, A17fs (A33G, Ins49GC)	Tailandia	Sowajassatakul et al. (10)
kan, cap	tlyA	WT, L180R (A33G, T539G)	Tailandia	Sowajassatakul et al. (10)
kan	rrs	A1401G	Rusia	Zimenkov et al. (202)
kan	eis	G-10A	Rusia	Zimenkov et al. (202)
kan	eis	C-14T	Rusia	Zimenkov et al. (202)
kan	eis	G-37T	Rusia	Zimenkov et al. (202)
cap	rrs	A1401G	Rusia	Zimenkov et al. (202)
kan	eis	G-10A	China	Zhao et al. (203)
kan	eis	C-14T	China	Zhao et al. (203)
kan	rrs	A1401G	China	Zhao et al. (203)
cap	rrs	A1401G	China	Zhao et al. (203)
kan, cap	rrs	A1401G	China	Zhao et al. (203)
kan	rrs	A1400G	Japón	Suzuki et al. (204)
kan	rrs	C1401T	Japón	Suzuki et al. (204)
kan	rrs	C1401A- G1483T	Japón	Suzuki et al. (204)
kan	rrs	C516T	Estonia	Krüüner et al. (205)
kan, amk	rrs	C516T	Estonia	Krüüner et al. (205)
kan, amk	rrs	A1400G	Estonia	Krüüner et al. (205)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
amk, cap	rrs	A1401G	Uzbekistá n	Feuerriegel et al. (100)
cap	rrs	C1402T	Uzbekistá n	Feuerriegel et al. (100)
cap	tlyA	R18stop	Uzbekistá n	Feuerriegel et al. (100)
cap	tlyA	L118R	Uzbekistá n	Feuerriegel et al. (100)
amk, cap	tlyA	L160W	Uzbekista n	Feuerriegel et al. (100)
kan, amk, cap	rrs	A1401G	Georgia	Jugheli et al. (65)
kan, amk, cap	rrs	G1158T	Portugal	Perdigao et al. (99)
kan, amk, cap	rrs	A1401G	Portugal	Perdigao et al. (99)
kan, amk, cap	rrs	A1401- G1158T	Portugal	Perdigao et al. (99)
kan, cap	rrs	G1484T- C1402A	Portugal	Perdigao et al. (99)
cap	rrs	Ins1211G	Portugal	Perdigao et al. (99)
kan, cap	rrs	Ins1512G	Portugal	Perdigao et al. (99)
kan, cap	tlyA	K69Q (A205C)	Portugal	Perdigao et al. (99)
kan, amk, cap	tlyA	E75X (G223T)	Portugal	Perdigao et al. (99)
kan, amk, cap, str	rrs/gidB	A1401G, A1338C/34fs (A1401G, A1338C/ ▲G102)	Sur de Korea	Via et al. (98)
kan, amk, cap, str	rrs/gidB	A1401G/D85G (A1401G/A25 4G)	Sur de Korea	Via et al. (98)
kan, amk, cap	rrs	A1401G- A1338C	Sur de Korea	Via et al. (98)
kan, amk, cap	rrs/gidB	A1401G/34fs, V77A, L35R, R96C (A1401G/▲G 102, T230C, T104G, C286T)	Sur de Korea	Via et al. (98)
kan, amk, cap	rrs	A1401G	Sur de Corea	Via et al. (98)
kan, cap, str	rrs	A514C	Sur de Korea	Via et al. (98)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
kan	gidB	I114T, 39fs (T341C, ▲C115)	Sur de Korea	Via et al. (98)
kan	rrs	A1401G	Sudáfrica	Evans et al. (206)
kan, amk	rrs	A1401G	Francia	Brossier et al. (167)
kan, amk, cap	rrs	A1401G	Francia	Brossier et al. (167)
kan, amk, cap, str	rrs	A1401G	Francia	Brossier et al. (167)
kan, amk, cap, str	rrs	A1401G- A513C	Francia	Brossier et al. (167)
kan, amk, cap, str	rrs	G1484T- A907C	Francia	Brossier et al. (167)
kan	rrs	1401G	Vietnam	Kiet et al. (168)
kan	rrs	G1484T	Vietnam	Kiet et al. (168)
kan, amk, cap	rrs	A1401G	India	Khanna et al. (207)
kan, amk, cap	rrs	G1484T	India	Khanna et al. (207)
kan	rrs	T16G-C1402T	Korea, EE. UU, Filipinas, Letonia, China	Leung et al. (208)
kan	rrs	C491T	Korea, EE. UU, Filipinas, Letonia, China	Leung et al. (208)
kan	rrs	A1401G	Korea, EE. UU, Filipinas, Letonia, China	Leung et al. (208)
pas	thyA	T202A (A604G)	Korea, EE. UU, Filipinas, Letonia, China	Leung et al. (208)
pas	thyA	D117G (A350G)	Korea, EE. UU, Filipinas, Letonia, China	Leung et al. (208)
kan, amk, cap	rrs	A1401G	Taiwán	Huang et al. (164)
amk	rrs	A1401G	Sudáfrica	Sirgel et al. (209)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
amk, cap	rrs	A1401G	Sudáfrica	Sirgel et al. (209)
kan, amk, cap	eis	C12T	Sudáfrica	Malinga et al. (105)
kan, amk, cap	eis	C14T	Sudáfrica	Malinga et al. (105)
kan, amk, cap	rrs	G878A	Sudáfrica	Malinga et al. (105)
kan, amk, cap	Rv1258c (tap)	Y177H	Sudáfrica	Malinga et al. (105)
kan, amk	eis	C14T	Sudáfrica	Malinga et al. (105)
cap	rrs	G878A	Sudáfrica	Malinga et al. (105)
kan	whiB7	133insC	CDC	Reeves et al. (104)
cap	tlyA	N236K	CDC	Maus et al. (135)
cap	tlyA	218LinsC	CDC	Maus et al. (135)
cap	tlyA	L150P	CDC	Maus et al. (135)
kan, amk, cap	eis	C12T	Marrueco s	Oudghiri et al. (189)
kan, amk, cap	eis	C14T	Marrueco s	Oudghiri et al. (189)
kan, amk, cap	rrs	A1401G	Francia	Brossier et al. (210)
kan, amk, cap	rrs	C1402T	Francia	Brossier et al. (210)
kan, amk, cap	rrs/eis	A1401G/C- 14T	Francia	Brossier et al. (210)
kan, amk, cap	eis	C-14T	Francia	Brossier et al. (210)
kan, amk	rrs	A1401G	Francia	Brossier et al. (210)
kan, amk	eis	C-14T	Francia	Brossier et al. (210)
kan, cap	eis	G-37T	Francia	Brossier et al. (210)
kan	eis	G-10A	Francia	Brossier et al. (210)
kan	eis	G-37T	Francia	Brossier et al. (210)
kan	eis	C-14T	Francia	Brossier et al. (210)
kan	eis	C-12T	Francia	Brossier et al. (210)
cicloserina	alr	L89R	Belarus	Wollenberg et al. (106)
kan	rrs	A1400G	Belarus	Wollenberg et al. (106)
kan	rrs	C1483T	Belarus	Wollenberg et al. (106)
kan	eis	G-10A	Belarus	Wollenberg et al. (106)
kan	eis	C-14T	Belarus	Wollenberg et al. (106)
amk	rrs	A1400G	Belarus	Wollenberg et al. (106)
amk	rrs	C1483T	Belarus	Wollenberg et al. (106)
cap	rrs	A1400G	Belarus	Wollenberg et al. (106)
cap	rrs	C1483T	Belarus	Wollenberg et al. (106)
cap	tlyA	LOF (pérdida de función de tlyA)	Belarus	Wollenberg et al. (106)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
amk, cap	rrs	A1401G	Portugal y Brasil	Machado et al. (211)
amk	eis	G-10A	Portugal y Brasil	Machado et al. (211)
pas	folC/thyA	T20P/W101R	China	Zhang et al. (110)
pas	folC	E40Q	China	Zhang et al. (110)
pas	folC	E40G	China	Zhang et al. (110)
pas	folC/thyA	I43T/H75N	China	Zhang et al. (110)
pas	folC	I43S	China	Zhang et al. (110)
pas	folC	I43A	China	Zhang et al. (110)
pas	folC/thyA	I43A/T22A	China	Zhang et al. (110)
pas	folC/thyA	R49P/H75N	China	Zhang et al. (110)
pas	folC	R49W	China	Zhang et al. (110)
pas	folC/ribD	L56V/G-11A	China	Zhang et al. (110)
pas	folC	R91W	China	Zhang et al. (110)
pas	folC	S150G	China	Zhang et al. (110)
pas	folC	E153A	China	Zhang et al. (110)
pas	folC	E153G	China	Zhang et al. (110)
pas	folC	S150G	China	Zhang et al. (110)
pas	folC/thyA	A420V/T202A	China	Zhang et al. (110)
pas	ribD	G-11A	China	Zhang et al. (110)
pas	ribD	G8R	China	Zhang et al. (110)
pas	thvA	Y36C	China	Zhang et al. (110)
pas	thvA	H75N	China	Zhang et al. (110)
pas	thvA	G76stop	China	Zhang et al. (110)
pas	thvA	V77F	China	Zhang et al. (110)
pas	thvA	W83C	China	Zhang et al. (110)
pas	thvA	W83stop	China	Zhang et al. (110)
pas	thyA	G91R	China	Zhang et al. (110)
pas	thvA	W98stop	China	Zhang et al. (110)
pas	thvA	S105P	China	Zhang et al. (110)
pas	thvA	R1260	China	Zhang et al. (110)
pas	thyA	F152V	China	Zhang et al. (110)
pas	thvA	C161T	China	Zhang et al. (110)
nas	thvA	H207R	China	Zhang et al. (110)
nas	folC	F40G	China	I_{100} et al (100)
pas	folC	F40K	China	Luo et al. (109)
nas	folC	F400	China	Luo et al. (109)
pas	folC	E40D	China	Luo et al (109)
pas	JUIC	LHUK	Ciina	

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
pas	folC	I43A	China	Luo et al. (109)
pas	folC	I43T	China	Luo et al. (109)
pas	folC	D44G-S46R	China	Luo et al. (109)
pas	folC	R49Q	China	Luo et al. (109)
pas	folC	R49W	China	Luo et al. (109)
pas	folC/thyA	H100Y/Q97R	China	Luo et al. (109)
pas	folC	S150G	China	Luo et al. (109)
pas	thyA	T22P	China	Luo et al. (109)
pas	thyA	F30S	China	Luo et al. (109)
pas	thyA	P43S	China	Luo et al. (109)
pas	thyA	F52S	China	Luo et al. (109)
pas	thyA	H75Q	China	Luo et al. (109)
pas	thyA	W83stop	China	Luo et al. (109)
pas	thyA	Q97R	China	Luo et al. (109)
pas	thyA	D110G	China	Luo et al. (109)
pas	thyA	W133stop	China	Luo et al. (109)
pas	thyA	W133stop	China	Luo et al. (109)
pas	thyA	H147R	China	Luo et al. (109)
pas	thyA	D169N	China	Luo et al. (109)
pas	thyA	Q191stop	China	Luo et al. (109)
pas	thyA	L220P	China	Luo et al. (109)
pas	thyA/ribD	R235L/E91E	China	Luo et al. (109)
pas	thyA	R235P	China	Luo et al. (109)
pas	ridB	G-11A	China	Luo et al. (109)
pas	ridB	G249S	China	Luo et al. (109)
pas	thyA	T202A	China	Mathys et al. (111)
pas	thyA	T202A- R264stop	China	Mathys et al. (111)
pas	thyA/dfrA	T202A- R264stop/ V54A, C110R	China	Mathys et al. (111)
pas	thyA/dfrA	T202A, R264stop/S66 C	China	Mathys et al. (111)
pas	thyA	V261G	EE. UU	Mathys et al. (111)
pas	thyA	L183V	EE. UU	Mathys et al. (111)
pas	thyA	T202A	EE. UU	Mathys et al. (111)
pas	folP2	A-19G	EE. UU	Mathys et al. (111)
kan, amk	rrs	A1401G	Brasil	Matsui et al. (94)
kan, amk	rrs	A1401G	China	Yuan et al. (160)
kan, amk, cap	rrs	A1401G	China	Yuan et al. (160)

Droga	Gen	Cambio de nt/Cambio de aa	Región	Autor
kan, amk, cap	rrs	C1402T	China	Yuan et al. (160)

*aa=aminoácido, nt=nucleótido *amk=amikacina, kan= kanamicina, cap= capreomicina, vio= viomicina, pas= ácido paraaminosalicílico.

<u> </u>	— 1 /				
Posición	Topología	P_CyO	P_T	M_CyO	M_T
16-41	alfa1	0	0	0	1
42-48	loop	0	0	0	0
49-63	alfa2	0	0	0	2
64-71	loop	1	1	0	3
72-84	alfa3	0	0	1	2
85-88	loop	0	2	1	3
89-99	alfa4	4	8	12	20
100-109	loop	0	0	0	2
110-113	beta2	0	0	1	1
114-130	loop	0	0	0	4
131-134	beta3	0	0	0	0
135-142	alfa7	0	0	0	0
143-151	loop	0	0	0	1
152-154	beta4	0	0	0	0
155-160	loop	0	0	0	0
161-163	beta5	0	1	0	0
164-170	loop	0	0	0	1
171-177	alfa9	0	0	0	0
178-181	beta6	0	0	0	0
182-185	loop	0	0	0	0
186-189	beta7	0	0	0	0
190-192	loop	0	0	0	0
193-207	alfa10	0	0	0	1
208-210	loop	0	0	0	0
211-223	alfa10'	0	0	0	0
224-232	loop	0	0	0	0
233-235	beta7'	0	0	0	0
236	loop	0	0	0	0
237-247	alfa10"	0	0	0	0
248-254	beta9	0	0	0	0
255	loop	0	0	0	0
256-261	beta10	0	0	0	0
262-266	loop	0	0	0	0

Anexo 14. Número de mutaciones únicas en cada estructura secundaria de GyrA.

Posición	Topología	P_CyO	P_T	M_CyO	M_T
267-273	beta11	1	1	0	0
274-278	loop	0	0	0	0
278-292	alfa11	1	2	0	2
293-298	loop	0	1	0	0
299-304	beta12	0	0	0	0
305-313	loop	0	0	0	0
314-318	beta13	0	0	0	0
319-324	loop	0	0	0	0
325-335	alfa12	0	0	0	0
336-337	loop	0	0	0	0
338-344	beta14	0	0	0	0
345	loop	0	0	0	0
346-349	beta15	0	0	0	0
350-351	loop	0	0	0	0
352-355	beta16	0	0	0	0
356	loop	0	0	0	0
357-400*	alfa14	0	0	0	0
401-410	alfa14'	0	0	0	0
411-412	loop	0	0	0	0
413-426	alfa15	0	0	0	0
427-428	loop	0	0	0	0
429-437	alfa16	0	0	0	0
445-470	alfa18	0	0	0	0
471	loop	0	0	0	0
472-490	alfa19	0	0	0	0
491-496	loop	0	0	0	0
497-498	beta20	0	0	0	0
499	loop	0	0	0	0
500-838	ND	0	0	0	4

*P_CyO: mutaciones en cepas resistentes a ciprofloxacina y al menos a alguna otra fluoroquinolona para Perú;

P_T: mutaciones en cepas resistentes a fluoroquinolonas para Perú; M_CyO: mutaciones en cepas resistentes a ciprofloxacina y al menos a alguna otra fluoroquinolona para el resto del mundo; M_T: mutaciones en cepas resistentes a fluoroquinolonas para el resto del mundo.