

Facultad de

OCURRENCIA DE CÁNCER DE PULMÓN DESPUÉS DE UN EPISODIO DE TUBERCULOSIS: REVISIÓN SISTEMÁTICA Y METAANÁLISIS

LUNG CANCER OCCURRENCE AFTER AN EPISODE OF TUBERCULOSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS

TESIS PARA OPTAR POR EL TÍTULO PROFESIONAL DE MÉDICO CIRUJANO

> AUTORES JAVIER ALEXANDER CABRERA SANCHEZ VICENTE ALONSO CUBA PAREJA

> > ASESORA LARISSA OTERO VEGAS

> > > LIMA - PERÚ 2022

JURADO

Presidente: Dr. Sergio Octavio Vasquez Kunze

Vocal: Dr. Hector Jesus Sosa Valle

Secretario: Dra. Ana Maria Quintana Aquehua

Fecha de Sustentación: 08 de noviembre del año 2022

Calificación: Aprobado

ASESORA DE TESIS

Dra. Larissa Otero Vegas

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana

Cayetano Heredia

ORCID: 0000-0002-8348-4340

DEDICATORIA

A nuestras familias.

AGRADECIMIENTOS

Agradecemos inmensamente a nuestra asesora por su guía constante durante los últimos dos años. También agradecemos al Dr. Patrick Van der Stuyft y al Dr. Víctor Vega Zambrano, quienes brindaron aportes valiosos al desarrollo de este trabajo. Finalmente, agradecemos al Instituto de Medicina Tropical Alexander von Humboldt por el apoyo durante el desarrollo de nuestra tesis y por la difusión de los resultados de nuestra investigación.

FUENTES DE FINANCIAMIENTO

El estudio recibió el apoyo financiero del acuerdo marco de colaboración institucional IV entre el Instituto de Medicina Tropical Amberes, Bélgica y el Instituto de Medicina Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Perú. L. Otero cuenta con el apoyo de un premio de líder mundial emergente del Centro Internacional Fogarty en los Institutos Nacionales de Salud (K43TW011137). Rol de la fuente de financiación: la fuente de financiación no tenía ningún papel en el diseño, la interpretación o la decisión de presentar este manuscrito.

DECLARACIÓN DE CONFLICTO DE INTERÉS

Los autores declaran no tener conflictos de interés

RESULTADO DEL INFORME DE SIMILITUD

OCURRENCIA DE CÁNCER DE PULMÓN DESPUÉS DE UN EPISODIO DE TUBERCULOSIS: REVISIÓN SISTEMÁTICA Y METAANÁLISIS

INFORM	IE DE ORIGINALIDAD	
	2% 17% 20% 8% TRABAJOS DEL ESTUDIANTE	
FUENTE	ES PRIMARIAS	
1	Submitted to Kingston University Trabajo del estudiante	1%
2	www.science.gov Fuente de Internet	1%
3	Submitted to Institute of Health & Management Pty Ltd Trabajo del estudiante	1%
4	Nardin Hanna, Youstina Hanna, Henrietta Blinder, Julia Bokhaut, Sherri L. Katz. "Predictors of sleep disordered breathing in children with Down syndrome: a systematic review and meta-analysis", European Respiratory Review, 2022 Publicación	1 %
5	Victor Vega, Sharon Rodríguez, Patrick Van der Stuyft, Carlos Seas, Larissa Otero. "Recurrent TB: a systematic review and meta- analysis of the incidence rates and the	1%

TABLA DE CONTENIDOS

I.	Introducción1		
II.	Materiales y Métodos2		
III.	Resultados3		
IV.	Discusión7		
V.	Conclusiones9		
VI.	Referencias Bibliográficas9		
Material Suplementario14			

RESUMEN

Antecedentes: La tuberculosis genera efectos de salud a largo plazo más allá de la cura, incluyendo enfermedades respiratorias crónicas. Investigamos si la tuberculosis es un factor de riesgo para el cáncer pulmonar posterior. Métodos: Buscamos en PubMed, Scopus, Cochrane, Latin American and Caribbean Health Sciences Literature y Scientific Electronic Library Online estudios de cohorte y casos-controles con estimados que midan la asociación entre tuberculosis y cáncer pulmonar posterior. Utilizamos el modelo de efectos aleatorios para el metaanálisis. El estudio se registró en Prospero (CDR42020178362). Resultados: De 6240 registros, incluimos 29 estudios de cohorte y 44 casos-controles. El metaanálisis de estimados ajustados por edad y tabaquismo (evaluados cuantitativamente) fue HR 1.51 (IC 95% 1.30–1.76, I2 = 81%; cinco estudios), OR 1.74 (IC 95% 1.42–2.13, I2 = 59%; 19 estudios). La ocurrencia de cáncer pulmonar aumentó en los 2 primeros años después del diagnóstico de tuberculosis (HR 5.01, IC 95% 3.64–6.89; dos estudios), pero luego disminuyó. La mayoría de estudios fueron retrospectivos, tuvieron un riesgo de sesgo moderado a alto y no controlaron para tabaquismo pasivo, exposición ambiental y estado socioeconómico. La heterogeneidad fue alta. **Conclusión:** Documentamos una asociación entre tuberculosis y la ocurrencia de cáncer pulmonar, particularmente en los primeros 2 años. Algunos casos de cáncer pudieron estar presentes durante el diagnóstico de tuberculosis y no se puede determinar causalidad. Se necesitan estudios prospectivos que controlen factores de confusión clave para identificar qué pacientes con tuberculosis tienen el mayor riesgo, así como enfoques rentables para mitigar dicho riesgo.

Palabras clave: tuberculosis, cáncer de pulmón, neoplasia de pulmón, revisión sistemática, metaanálisis

ABSTRACT

Background: People with tuberculosis experience long-term health effects beyond cure, including chronic respiratory diseases. We investigated whether tuberculosis is a risk factor for subsequent lung cancer. Methods: We searched PubMed, Scopus, Cochrane, Latin American and Caribbean Health Sciences Literature and the Scientific Electronic Library Online for cohort and case-control studies providing effect estimates for the association between tuberculosis and subsequent lung cancer. We pooled estimates through random-effects meta-analysis. The study was registered in PROSPERO (CDR42020178362). Results: Out of 6240 records, we included 29 cohort and 44 case-control studies. Pooled estimates adjusted for age and smoking (assessed quantitatively) were hazard ratio (HR) 1.51 (95% CI 1.30–1.76, I2=81%; five studies) and OR 1.74 (95% CI 1.42–2.13, I2=59%; 19 studies). The occurrence of lung cancer was increased for 2 years after tuberculosis diagnosis (HR 5.01, 95% CI 3.64–6.89; two studies), but decreased thereafter. Most studies were retrospective, had moderate to high risk of bias, and did not control for passive smoking, environmental exposure and socioeconomic status. Heterogeneity was high. **Conclusion:** We document an association between tuberculosis and lung cancer occurrence, particularly in, but not limited to, the first 2 years after tuberculosis diagnosis. Some cancer cases may have been present at the time of tuberculosis diagnosis and therefore causality cannot be ascertained. Prospective studies controlling for key confounding factors are needed to identify which tuberculosis patients are at the highest risk, as well as cost-effective approaches to mitigate such risk.

Keywords: tuberculosis, lung cancer, lung neoplasm, systematic review, metaanalysis

Lung cancer occurrence after an episode of tuberculosis: a systematic review and meta-analysis

Javier Cabrera-Sanchez ¹, Vicente Cuba¹, Victor Vega², Patrick Van der Stuyft³ and Larissa Otero^{1,2}

¹Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru. ²Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. ³Dept of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

Corresponding author: Javier Cabrera-Sanchez (javier.cabrera@upch.pe)

Shareable abstract (@ERSpublications) After an episode of tuberculosis, an individual is more likely to be diagnosed with lung cancer than a person in the general population. This is most marked within the first 2 years after a tuberculosis diagnosis, but a causal relation cannot be ascertained. https://bit.ly/38I4HMc

Cite this article as: Cabrera-Sanchez J, Cuba V, Vega V, *et al.* Lung cancer occurrence after an episode of tuberculosis: a systematic review and meta-analysis. *Eur Respir Rev* 2022; 31: 220025 [DOI: 10.1183/ 16000617.0025-2022].

Copyright ©The authors 2022

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 4 Feb 2022 Accepted: 16 May 2022

Abstract

Introduction: People with tuberculosis experience long-term health effects beyond cure, including chronic respiratory diseases. We investigated whether tuberculosis is a risk factor for subsequent lung cancer. *Methods:* We searched PubMed, Scopus, Cochrane, Latin American and Caribbean Health Sciences Literature and the Scientific Electronic Library Online for cohort and case–control studies providing effect estimates for the association between tuberculosis and subsequent lung cancer. We pooled estimatesthrough random-effects meta-analysis. The study was registered in PROSPERO (CDR42020178362).

Results: Out of 6240 records, we included 29 cohort and 44 case–control studies. Pooled estimates adjusted for age and smoking (assessed quantitatively) were hazard ratio (HR) 1.51 (95% CI 1.30–1.76, I²=81%; five studies) and OR 1.74 (95% CI 1.42–2.13, I²=59%; 19 studies). The occurrence of lung cancer was increased for 2 years after tuberculosis diagnosis (HR 5.01, 95% CI 3.64–6.89; two studies),but decreased thereafter. Most studies were retrospective, had moderate to high risk of bias, and did not control for passive smoking, environmental exposure and socioeconomic status. Heterogeneity was high.

Conclusion: We document an association between tuberculosis and lung cancer occurrence, particularly in, but not limited to, the first 2 years after tuberculosis diagnosis. Some cancer cases may have been present at the time of tuberculosis diagnosis and therefore causality cannot be ascertained. Prospective studies controlling for key confounding factors are needed to identify which tuberculosis patients are at the highest risk, as well as cost-effective approaches to mitigate such risk.

Introduction

Tuberculosis is a major health problem worldwide. Although the incidence is slowly declining, an estimated 10 million cases and 1.5 million tuberculosis deaths occurred in 2020 [1]. Its morbidity burden extends beyond cure, since people successfully treated for tuberculosis experience health problems in the long term. Tuberculosis has been associated with subsequent lung function impairment and other respiratory conditions such as bronchiectasis and COPD [2, 3]. All-cause mortality is significantly higher in people treated for tuberculosis compared to the general population [4].

The association between tuberculosis and lung cancer has received special interest. There were 2.2 million new cases and 1.8 million deaths from lung cancer in 2020 [5]. Chronic inflammation can promote tumour growth in different types of cancer and chronic inflammation in the lung has been hypothesised to promote carcinogenesis [6]. Chronic bronchitis and emphysema have been associated with increased risk of lung cancer, independently of tobacco use [7]. Inflammation from pulmonary tuberculosis has also been suspected to contribute to lung cancer development, but studies on the association between an episode of

tuberculosis and subsequent lung cancer have shown mixed results. Some found a positive association, while others did not [8, 9].

A 2009 systematic review of epidemiological studies on the subject found a significant increased risk of lung cancer among people with previous tuberculosis, especially for adenocarcinoma [10]. However, most included studies had a case–control design. During the past decade, several cohort studies assessing this relationship have been published. Still, establishing a causal relationship between tuberculosis and lung cancer is challenging, as it is difficult to control for cofounding due to shared risk factors, especially smoking [11]. It is also problematic to ascertain the absence of lung cancer upon tuberculosis diagnosis, at the start of the follow up. Therefore, reverse causation needs to be considered, the more so because lung cancer facilitates activation of latent tuberculosis infection [12].

We appraised in a systematic review the now available evidence that evaluates the association between tuberculosis and subsequent lung cancer occurrence and mortality.

Methods

We conducted a systematic review and meta-analysis. The population, exposure, comparator, outcome framework was filled out as follows. Population: any population; exposure: tuberculosis; comparator: subjects without tuberculosis; outcomes: lung cancer diagnosis (the main outcome) and lung cancer mortality (the secondary outcome). The protocol was prospectively registered in PROSPERO (ID number: CDR420178362). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 checklist to report our findings (appendix 1).

Search strategy and selection criteria

We searched the literature in PubMed, Scopus, Cochrane, Latin American and Caribbean Health Sciences Literature and the Scientific Electronic Library Online using terms related to "tuberculosis" and "lung cancer" (the full search strategy can be found in appendix 2). We manually searched the references cited in the papers included. Full-text peer-reviewed papers reporting on cohort and case—control studies written in English, French or Spanish and published between 1 January 1980 and 1 September 2021 were eligible for inclusion. We withheld studies with a comparator group reporting an effect estimate for the association between tuberculosis and lung cancer diagnosis or lung cancer mortality. Retrieved articles were uploaded to Covidence 2.0. Title and abstract screening as well as full-text reviews were performed in duplicate by two reviewers (J. Cabrera-Sanchez and V. Cuba). Discrepancies about the inclusion of a study were resolved by consensus or through discussion with a third reviewer (L. Otero).

Data extraction and risk-of-bias assessment

We extracted data using a pilot-tested standardised form in Covidence. We extracted bibliographic information, study setting, population description, number of participants, methods to ascertain exposure (tuberculosis)/outcomes (lung cancer diagnosis and lung cancer mortality) and results, including number of events per exposure group and unadjusted and adjusted effect estimates of the association between tuberculosis and subsequent lung cancer diagnosis or mortality. We used the option "merge" in Covidence when data concerning the same study was reported in more than one paper, to treat multiple reports as one single study. In these cases, we extracted the effect estimate based on the larger study population. Authors were contacted by email when necessary to obtain relevant information.

To assess the risk of bias, we adapted the Newcastle–Ottawa scale for observational studies, maintaining three domains with a total of eight items: representativeness of the study population (four items), comparability of study groups (one item) and ascertainment of exposure (for cohorts), or outcome (for case– control studies) (three items). The full description of the adapted Newcastle–Ottawa scale, therationale for adaptations and the rules used to reach the overall risk of bias judgment can be found in the supplementary material (appendices 3 and 4). Both the data extraction and the risk of bias assessment were accomplished independently by two reviewers and disagreements were solved with a third reviewer.

Statistical analysis

We performed a random-effects meta-analysis to pool unadjusted as well as adjusted estimates of the association between tuberculosis and subsequent lung cancer diagnosis or lung cancer mortality. We developed three models. In the first model, we pooled unadjusted estimates extracted from the included studies. In models two and three, we pooled adjusted estimates. Since the variables considered for adjustment varied widely between studies, we pre-defined (as proposed by RILEY *et al.* [13]) a minimum set of variables for which studies had to adjust in order to be included in the latter models. These variables were age and smoking, for being associated with tuberculosis and constituting the strongest widespread risk factors for

lung cancer. Smoking could be assessed either qualitatively by smoking status categories (never-, former or current smoker), or quantitatively, when measured by intensity, duration or cumulative amount. In the second model, we pooled studies' estimates adjusted for at least age and any assessment of smoking. In the third model, we pooled estimates adjusted for at least age and any quantitative assessment of smoking. Estimates from studies restricted to never-smokers were considered to be quantitatively adjusted for smoking.

Thus, studies could contribute to more than one model depending on the estimates reported. If a study only reported results stratified by subgroups, we calculated a single pooled estimate. Studies that did not report unadjusted estimates nor estimates adjusted for at least age and smoking were not included in the meta-analyses, but are still part of the descriptive synthesis of the review, except when the data were available to calculate risk ratios or odds ratios for use in model 1. In view of their methodological differences, separate meta-analyses were performed for cohort and case–control studies. For cohort studies, risk ratios, incidence rate ratios and standardised ratios were pooled together with hazard ratios (HRs). We obtained estimates of pooled odds ratios for case–control studies.

To explore heterogeneity, we performed stratified meta-analyses. First, for all studies, stratified by overall risk of bias (as assessed by the review team) and then, conditional on data availability, by sex, smoking status and latency. Since effect estimates in never-smokers are free of residual confounding by active tobacco consumption, we did a subgroup analysis restricted to that subpopulation. We performed stratified analysis by time intervals between tuberculosis diagnosis and lung cancer detection (latency) aiming to decrease the possibility of lung cancer being present at time of tuberculosis diagnosis and deal with reverse causality bias. For this stratified analysis, we constructed categories accommodating the heterogeneity of the cut-offs reported.

We developed funnel plots and performed the Egger test to assess publication bias. Meta-analysis was done with the meta package version 4.16-2 using R Studio version 4.0.3. Effect measures were calculated with STATA 15.0 (Stata Corp, College Station, TX, USA) and OpenEpi (Centers for Disease Control and Prevention, Atlanta, GA, USA) when studies did not report them directly, but data to do so were available.

Results

The search yielded 6240 records, 5106 of which we screened after removing duplicates (figure 1). We excluded 4718 records and retained 127 for retrieving the full text. 62 reports fulfilled the inclusion criteria and were included. We identified 18 eligible records from citation searching. Hence, we included a total of 80 records and 73 unique studies. Lung cancer diagnosis was reported in 62 studies: 19 were cohort studies [8, 9, 14–30] and 43 were case-control studies [31–72]. Lung cancer mortality was reported in 13 studies: 12 were cohort studies [9, 26, 73–82] and one was a case–control study [83]. Two studies [9, 26] reported both outcomes. Appendix 5 indicates the number of studies included in the different meta-analysis models that pooled the estimates of associations of tuberculosis with subsequent lung cancer diagnosis or mortality. 46 studies originated from Asia, predominantly from China, Taiwan and South Korea (appendix 6); 16 came from North America (USA and Canada); 10 from Europe; and one from Africa. No studies were conducted in Oceania, Latin America or the Caribbean. Only 39 out of 62 and three out of 13 studies addressing diagnosis or mortality, respectively, adjusted somehow for smoking. 12, 25 and 25 studies had low, moderate and high risk of bias, respectively, for the main outcome. Four, one and eight studies were at low, moderate and high risk of bias, respectively, for the secondary outcome. A full description of the included studies and their risk of bias across different domains can be found in the supplementary material (appendices 7 and 8).

Sample sizes ranged from 6699 to 15 219 024 (median 29 641, interquartile range (IQR) 304 977) in cohort studies and from 144 to 91 301 (median 1212, IQR 1983) in case–control studies reporting the main outcome. Sample size in studies reporting the secondary outcome ranged from 515 to 1 607 710 (median 19 497, IQR 39 782) in cohort studies and was 1046 in one case–control study. For lung cancer diagnosis, the minimum length of follow-up in cohort studies was 3.8 years and the maximum was 18.5 years(median 8 years, IQR 4 years); for lung cancer mortality, the minimum was 2 years and the maximum25 years (median 10 years, IQR 7 years). In most cohort studies, lung cancer was detected under routine medical care and coupled to tuberculosis diagnosis through record linkage or by using registries, except in one study [25], where chest radiography was performed systematically as part of the study's follow-up.

Individual results reported in the included studies are tabulated in appendix 9. Results from the meta-analysis are summarised in table 1. For lung cancer diagnosis, among cohort studies, the pooled adjusted hazard ratio for persons with a tuberculosis history *versus* nonexposed individuals was 1.87 (95% CI 1.29–2.70, $I^2=94\%$; figure 2) in model 2 and 1.57 (95% CI 1.20–2.07, $I^2=74\%$; figure 3) in model 3.

FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flowchart. LILACS: Latin American and Caribbean Health Sciences Literature; SciELO: Scientific Electronic Library Online.

TABLE 1 Pooled estimates of the association between tuberculosis and subsequent lung cancer diagnosis or mortality

	Model 1 [#]		Model 2 [¶]		Model 3 ⁺	
	Studies n	Pooled estimate [§] (95% CI)	Studies n	Pooled estimate [§] (95% Cl)	Studies n	Pooled estimate [§] (95% CI)
Cohort studies						
Lung cancer diagnosis	8 ^f	2.96 (2.28-3.83)	7	1.77 (1.41–2.22)	5	1.51 (1.30-1.76)
Adenocarcinoma		NA	3	2.00 (0.93-4.31)	3	2.00 (0.93-4.31)
Small cell carcinoma		NA	3	0.88 (0.34-2.26)	3	0.88 (0.34-2.26)
Squamous cell carcinoma		NA	3	2.01 (1.00-4.03)	3	2.01 (1.00-4.03)
Lung cancer mortality	7	2.97 (2.14-4.11)	2	1.62 (1.18-2.21)		NA
Case-control studies						
Lung cancer diagnosis	41	2.00 (1.65-2.41)	23	1.76 (1.41–2.19)	19	1.74 (1.42–2.13)
Adenocarcinoma	10	2.27 (1.46-3.52)	8	1.96 (1.20-3.21)	6	1.51 (0.92-2.48)
Small cell carcinoma	4	2.26 (1.13-4.52)	3	1.50 (0.95–2.39)	2	2.05 (0.42–10.03)
Squamous cell carcinoma	3	4.51 (2.75–7.39)	4	2.43 (1.34-4.41)	3	2.23 (0.85-5.86)
Lung cancer mortality	1	2.86 (1.87-4.45)		NA		NA

NA: not applicable (no study reporting this estimate). [#]: unadjusted estimates of lung cancer and previous tuberculosis; [¶]: adjusted for age and any assessment of smoking; [†]: adjusted for age and quantitatively assessed smoking; [§]: hazard ratio for cohort studies and odds ratio for case–control studies; ^f: studies from Taiwan used the same database and duplication of information was possible, so we considered only the cohort with the largest sample size [14].

Cohort studies			
	Hazard ratio	HR (95% CI)	Weight %
An <i>et al.</i> (2020)		4.18 (3.15-5.55)	14.5
Everatt et al. (2016)		2.04 (1.66-2.51)	16.2
Hong et al. (2016)	+	1.38 (1.31-1.46)	18.6
Littman et al. (2004)		1.00 (0.65-1.54)	11.2
Oh et al. (2020)		1.71 (0.86-3.40)	7.0
Shiels <i>et al.</i> (2011)		1.97 (1.46-2.65)	14.2
Yeo <i>et al.</i> (2021)		1.34 (1.22–1.47)	18.2
Random effects model	\diamond	1.77 (1.41-2.22)	100.0
l ² =92%, p<0.01	0.2 0.5 1 2 5		
	Decreases risk Increases risk		
Case-control studies			
	Odds ratio	OR (95% CI)	Weight %
Alavanja et al. (1992)	- <u>-</u>	2.00 (0.99-4.05)	4.1
Bodmer <i>et al.</i> (2012)		0.90 (0.78-1.04)	6.9
Brenner <i>et al.</i> (2001)		3.80 (2.69-5.37)	6.0
Brenner <i>et al</i> . (2010)		2.60 (0.72-9.43)	2.1
Koshiol <i>et al.</i> (2010)		0.96 (0.62-1.48)	5.5
Kreuzer <i>et al.</i> (2001)		1.20 (0.20-7.12)	1.3
Kreuzer <i>et al.</i> (2002)		1.61 (0.77-3.37)	3.9
Liang <i>et al.</i> (2009)		4.70 (1.64–13.50)	2.7
Lim <i>et al.</i> (2011)	· · · ·	1.58 (0.95–2.62)	5.1
Lo <i>et al.</i> (2013)		2.48 (1.45–4.25)	5.0
Osann <i>et al.</i> (2000)	t	1.80 (0.21–15.27)	0.9
Park <i>et al.</i> (2010)		2.56 (1.85–3.55)	6.1
Ramanakumar <i>et al.</i> (2006) study II		0.90 (0.48–1.68)	4.5
Ramanakumar <i>et al.</i> (2006) study I		2.70 (0.99–7.34)	2.9
Raspanti <i>et al.</i> (2016)		2.30 (1.50–3.52)	5.6
Samet <i>et al.</i> (1986)		1.40 (0.69–2.86)	4.1
Schwartz <i>et al.</i> (1996)		2.10 (0.61–7.22)	2.2
Wang <i>et al.</i> (2009)		2.43 (0.82–7.20)	2.6
Wu <i>et al.</i> (1995)		1.96 (1.06–3.64)	4.5
Wu-Williams et al. (1990)	· · · ·	1.30 (0.95–1.79)	6.2
Yang et al. (2015)	- 	1.52 (1.13–2.04)	6.3
Zatloukal <i>et al.</i> (2003)		1.75 (1.01–3.04)	4.9
Zheng <i>et al.</i> (1987)		1.50 (1.22–1.84)	6.7
Random effects model		1.76 (1.41–2.19)	100.0
l ² =79%, p<0.01	0.1 0.5 1 2 10		

FIGURE 2 Forest plots showing the association between tuberculosis and subsequent lung cancer diagnosis in studies with adjustment for age and any assessment of smoking (model 2). HR: hazard ratio.

There exists heterogeneity, but six out of seven studies that controlled for smoking documented a positive association. Among case–control studies, the pooled adjusted odds ratio was 1.76 (95% CI 1.41–2.19, $I^2=79\%$; figure 2) in model 2 and 1.74 (95% CI 1.42–2.13, $I^2=59\%$; figure 3) in model 3. Moderate heterogeneity was found, with 20 out of 23 studies included in model 2 documenting a positive association between tuberculosis and subsequent lung cancer diagnosis. The pooled model 2 estimate for lung cancer mortality subsequent to tuberculosis was significant in cohort studies (HR 1.62, 95% CI 1.18–2.21; $I^2=68\%$; appendix 10). The pooled estimates of the associations between tuberculosis and specific lung cancer subtypes (table 1) are generally in line with the overall results above, but lack precision.

We restricted stratified analyses (table 2) to the main outcome, lung cancer diagnosis, due to the small number of studies (n=2) eligible for inclusion in adjusted models of the secondary outcome. The estimates in the risk of bias strata differ between themselves, but still remain broadly in line with the nonstratified

Cohort studies			
	Hazard ratio	HR (95% CI)	Weight %
Everatt et al. (2016)		2.04 (1.66-2.51)	19.6
Hong <i>et al.</i> (2016)		1.38 (1.31-1.46)	29.9
Littman et al. (2004)		1.00 (0.65-1.54)	8.8
Shiels et al. (2011)	÷	1.97 (1.46-2.65)	14.0
Yeo <i>et al.</i> (2021)	-	1.34 (1.22–1.47)	27.8
Random effects model		1.51 (1.30-1.76)	100.0
l ² =81%, p<0.01	0.5 1 2		
	Decreases risk Increases risk		
Case–control studies			
	Odds ratio	OR (95% CI)	Weight %
Brenner <i>et al.</i> (2001)		3.80 (2.69-5.37)	8.7
Brenner <i>et al.</i> (2010)		2.60 (0.72-9.43)	2.1
Koshiol <i>et al.</i> (2010)		0.96 (0.62-1.48)	7.6
Kreuzer et al. (2001)		1.20 (0.20-7.12)	1.2
Kreuzer et al. (2002)		1.61 (0.77-3.37)	4.6
Liang <i>et al</i> . (2009)		4.70 (1.64-13.50)	2.8
Lim <i>et al.</i> (2011)	- <u></u>	1.58 (0.95-2.62)	6.8
Lo et al. (2013)		2.48 (1.45-4.25)	6.4
Osann <i>et al.</i> (2000)		1.80 (0.21-15.27)	0.8
Ramanakumar <i>et al.</i> (2006) study II	<u> </u>	0.90 (0.48-1.68)	5.6
Ramanakumar <i>et al.</i> (2006) study I		2.70 (0.99-7.34)	3.1
Samet <i>et al.</i> (1986)		1.40 (0.69-2.86)	4.8
Schwartz et al. (1996)		2.10 (0.61-7.22)	2.2
Wang <i>et al</i> . (2009)		2.43 (0.82-7.20)	2.7
Wu et al. (1995)		1.96 (1.06-3.64)	5.6
Wu-Williams et al. (1990)	+ + +	1.30 (0.95-1.79)	9.0
Yang <i>et al.</i> (2015)		1.52 (1.13-2.04)	9.3
Zatloukal et al. (2003)		1.75 (1.01-3.04)	6.3
Zheng <i>et al.</i> (1987)		1.50 (1.22-1.84)	10.4
Random effects model		1 74 (1 42-2 12)	100.0
$l^2 = 50\%$ p<0.01		1.14 (1.42-2.13)	100.0
1 -3370, μ~0.01	0.1 0.5 1 2 10		
	Decreases risk Increases risk		

FIGURE 3 Forest plots showing the association between tuberculosis and subsequent lung cancer diagnosis in studies with adjustment for age and quantitatively assessed smoking (model 3). HR: hazard ratio.

results reported earlier. Results by sex were comparable for men and women. The estimates in never-smokers were significant in both cohort and case-control studies and close to the earlier-obtained estimates in the models including studies that adjusted for smoking. We observed that the risk of lung cancer diagnosis was high in the first years after tuberculosis diagnosis (table 2 and appendix 11), but decreased and became moderate-to-weak over time.

Out of the 19 cohort studies reporting the main outcome, 10 did not perform stratified analysis according to the interval between tuberculosis diagnosis and detection of lung cancer nor exclude lung cancer cases detected in the first years of follow-up. Those that did so used variable cut-off points, which constrained our stratified pooled analysis by latency. The pooled hazard ratio adjusted for smoking and age for patients that developed cancer beyond 2 years of tuberculosis diagnosis from the only two studies reporting such effect estimate [17, 25] was 1.44 (95% CI 1.06–1.96; table 2). When we pooled study estimates that excluded lung cancer cases detected within 1 [15] or 2 years [17, 25] of tuberculosis diagnosis the pooled hazard ratio was 1.47 (95% CI 1.10–1.97) (appendix 12). Among the two cohort studies [18, 79] that reported adjusted results for the secondary outcome (lung cancer mortality), one [79] excluded patientswho died within the first 2 years of follow-up alongside patients with unconfirmed suspected malignancy (or with recent weight loss) at enrolment. Its adjusted hazard ratio for tuberculosis and death from lung cancer was 2.01 (95% CI 1.40–2.89).

TABLE 2 Stratilieu pooled analysis of the association between tuberculosis and subsequent tung cancel diagnosis						
	Model 1 [#]		Model 2 [¶]			Model 3 ⁺
	Studies n	Pooled estimate [§] (95% CI)	Studies n	Pooled estimate [§] (95% CI)	Studies n	Pooled estimate [§] (95% CI)
Cohort studies						
Risk of bias ^f						
Low	4	2.27 (1.58-3.26)	4	2.16 (1.35-3.44)	3	1.72 (1.25-2.38)
Moderate	7	3.68 (2.57-5.27)	2	1.38 (1.31-1.46)	1	1.38 (1.31-1.46)
High	1	5.86 (3.03-11.37)	1	1.00 (0.65-1.54)	1	1.00 (0.65-1.54)
Sex						
Male	4	1.95 (1.43-2.67)	2	1.59 (1.12-2.26)	2	1.59 (1.12-2.26)
Female	3	2.37 (1.92-2.92)	1	1.49 (1.28-1.74)	1	1.49 (1.28-1.74)
Smoking status ^f						
Never-smokers	1	2.45 (2.21-2.72)	2	1.69 (1.21-2.38)	2	1.69 (1.21-2.38)
Latency period ^f						
Up to 1 year	1	12.5 (7.17-21.73)	2	8.50 (4.09-17.67)	2	8.50 (4.09-17.67)
Up to 2 years		NA	2	5.01 (3.64-6.89)	2	5.01 (3.64-6.89)
Up to 5 years	2	7.69 (4.79–12.34)		NA		NA
≥2 years		NA	2	1.44 (1.06-1.96)	2	1.44 (1.06-1.96)
≥4 years		NA	2	0.82 (0.53-1.26)	2	0.82 (0.53-1.26)
≥5 years	2	2.36 (0.90-6.19)		NA		NA
≥7 years	2	1.61 (0.88-2.95)	1	1.69 (0.62-4.65)	1	1.69 (0.62-4.65)
≥10 years		NA	2	1.15 (0.40-3.29)	2	1.15 (0.40-3.29)
Case-control studies						
Risk of bias ^f						
Low	5	1.92 (0.82-4.51)	2	0.91 (0.79-1.04)	1	0.96 (0.62-1.48)
Moderate	15	1.89 (1.38-2.58)	10	1.94 (1.48-2.55)	10	1.94 (1.48-2.55)
High	21	2.18 (1.83-2.59)	11	1.87 (1.47-2.39)	8	1.48 (1.16-1.87)
Sex						
Male	10	2.34 (1.81-3.03)	6	2.07 (1.57-2.71)	5	1.87 (1.31-2.66)
Female	23	2.04 (1.67-2.50)	13	1.84 (1.49-2.29)	11	1.78 (1.39-2.28)
Smoking status ^f						
Never-smokers	18	1.69 (1.20-2.36)	13	1.90 (1.51-2.39)	13	1.90 (1.51-2.39)
Latency period ^f						
1–5 years		NA	2	7.20 (0.52-99.19)	2	7.20 (0.52-99.19)
≥5 years		NA	2	3.03 (1.30-7.04)	2	3.03 (1.30-7.04)
≥10 years		NA	3	1.57 (1.13-2.16)	3	1.57 (1.13-2.16)
≥20 years		NA	3	1.54 (0.97–2.44)	3	1.54 (0.97–2.44)

NA: not applicable (no study reporting this estimate). [#]: unadjusted estimates of lung cancer and previous tuberculosis; [¶]: adjusted for age and any assessment of smoking; ⁺: adjusted for age and quantitatively assessed smoking; ⁵: hazard ratio for cohort studies and odds ratio for case–control studies; ^f: pre-specified subgroup analysis.

Funnel plots of the main outcome do not indicate small-study effects (appendix 13). Egger test was not significant for the main outcome in cohort (p=0.61) and case–control studies (p=0.37). These analyses were not performed for the secondary outcome due to the small number of included studies. The Gradingof Recommendations, Assessment, Development and Evaluation (GRADE) assessment of the evidence (appendix 14) reveals overall low certainty for cohort studies and very low certainty for case–control studies.

Discussion

This systematic review and meta-analysis found moderate pooled effect estimates for being diagnosed with lung cancer after a tuberculosis episode: adjusted for age and smoking, a hazard ratio of 1.51 (95% CI 1.30–1.76) in cohort studies and an odds ratio of 1.74 (95% CI 1.42–2.13) in case–control studies. In addition, we found a compatible pooled hazard ratio of 1.62 (95% CI 1.18–2.21) of dying from lungcancer. The pooled hazard ratios and odds ratios for lung cancer occurrence remained consistent with the overall result in a stratified meta-analysis by risk of study bias and sex, and when restricted to never-smokers. The hazard ratio was positive for incidence of adenocarcinoma and squamous cell carcinoma diagnosis but not of small cell carcinoma. Importantly, in cohort studies we found, adjusted for age and smoking, a substantially increased occurrence of being diagnosed with lung cancer within the first2 years after tuberculosis diagnosis (HR 5.01, 95% CI 3.64–6.89) that waned after year two (HR 1.44,95% CI 1.06–1.96) and disappeared after 4 years.

Our crude results are comparable with the overall risk ratio adjusted for smoking (1.74, 95% CI 1.48-2.03) found in a previous review [10], which included 37 case–control and four cohort studies publishedbetween 1966 and 2008. However, that review concluded that, while declining much in the first 5 years, lung cancer risk ratio remained at ~2 for >20 years after a diagnosis of tuberculosis. The overall certainty

of evidence provided by the 43 case–control studies included in our review is very low, but most of the 19 cohort studies have moderate risk of bias, good precision and consistent effect estimates. However, the certainty of their accumulated evidence is rated low in the GRADE framework due to their observational nature. While almost all studies included in our review report effect estimates of the association between tuberculosis and subsequent lung cancer greater than one, there exists quite some heterogeneity that is possibly explained by the presence of (residual) confounding. It is of note that 31 out of the 73 studies did not even control for smoking status, while tobacco consumption increases the risk of developing lung cancer >10-fold [84]. However, when limiting our meta-analysis to the studies that controlled at least for smoking and age, or that selected never-smokers, we still found significant, moderately positive pooled hazard ratios and odds ratios.

The increased risk of lung cancer thus seems to be independent of active tobacco consumption, but we cannot exclude residual confounding by passive smoking, which has a weaker association to tuberculosis [85]. Furthermore, the studies did generally not adjust for socioeconomic status and environmental pollution, which have also been associated with tuberculosis and lung cancer [11]. Low socioeconomic status is a risk factor for tuberculosis [86] and may be associated with higher exposure to environmental pollution or occupational carcinogens. A meta-analysis found low socioeconomic status to mildly increase the risk of developing lung cancer after adjustment for smoking [87], and the authors hypothesised thatboth aforementioned exposures were overrepresented among people with lower socioeconomic status. Unfortunately, only two studies included in our review [26, 51] adjusted jointly for the three key confounders: age, smoking and socioeconomic status. Another limitation is that most studies did not conclusively rule out lung cancer upon tuberculosis diagnosis. Not surprisingly, since there are no effective screening methods to detect early or occult lung cancer, with chest radiographs lacking sensitivity and low-dose computed tomography being plagued by false positives [88]. Notwithstanding, the likelihood that occult cancer is present before the tuberculosis diagnoses can be high in retrospective designs and only two included studies were prospective. Furthermore, few studies reported estimates by latency to cancer diagnosis and among those that did, the time category cut-off points used were heterogeneous. This limited our scope for stratified meta-analysis by latency.

The substantially higher occurrence of lung cancer we uncovered in the first year (HR 8.50) and first 2 years (HR 5.0) following tuberculosis diagnosis, which fades out thereafter, raises the question whether cancer latency can be that short. The results could be explained by different mechanisms. Firstly, due to shared clinical and radiological characteristics lung cancer can initially be misdiagnosed as tuberculosis, as illustrated by a study in Taiwan [89] that found 1% of such misclassifications. Studies that include tuberculosis cases without bacteriological confirmation may be more prone to this error and most cohort studies in our review selected the exposed comparison group from large national databases or tuberculosis registries but do not clarify what percentage had bacteriological confirmation. Secondly, it is conceivable that occult cancer triggers active tuberculosis occurrence. A recent systematic review found that lungcancer patients are at nine-fold increased risk of developing active tuberculosis [12] and attributed most of the excess risk to the immunosuppressive cancer treatment. Still, people with undiagnosed lung cancer might be at increased risk of active tuberculosis due to cancer by itself having immunomodulatory effects. Excluding lung cancer cases diagnosed within the first 2 years of tuberculosis decreases, but not totally excludes the possibility of lung cancer prevalent cases being already present at the time of tuberculosis diagnosis. In our pooled analysis by latency (table 2), the adjusted hazard ratio for lung cancer diagnosis after ≥ 2 years of tuberculosis was 1.44 (95% CI 1.06–1.96). However, it was not significant at \ge 7 years and \ge 10 years. In the three cohort studies [15, 17, 25] that report adjusted stratified analysis according to latency for lung cancer diagnosis, the risk decreased as latency increases (appendix 11).

Thirdly, surveillance bias exists if tuberculosis patients are offered, or demand, more medical imaging after diagnosis and further lung conditions may be more likely to be diagnosed. However, regular chest radiography does not seem to increase the diagnostic yield when screening the general population [90]. In the prospective study by SHIELS *et al.* [25] included in our review, a thorough medical examination with chest radiography was performed at baseline and all participants underwent regular repeat examinations and chest radiography at the same interval during 5–8 years' follow-up [91]. The overall hazard ratio for lung cancer adjusted for age and smoking in this study was significant and decreased with time after tuberculosis diagnosis. Temporal ambiguity in retrospective designs coupled to the scarcity of prospective studies demonstrating a decreasing relative risk over time has been interpreted as absence of genuine

relationship between tuberculosis and lung cancer [18]. However, a credible alternative hypothesis wouldbe that the risk dwindles after tuberculosis is cured, analogous to lung cancer hazard progressively decreasing after smoking cessation.

We document a modestly increased risk of developing lung cancer after a tuberculosis episode and observe consistency: hazard ratio and odds ratio between 1.5 and 2 in our overall and stratified analyses. Methodological limitations of the reviewed studies warrant a plea for cautious interpretation and preclude a causal reading, but tuberculosis being a risk factor for lung cancer is plausible and coherent. Chronic inflammation in the lung promotes carcinogenesis, in which macrophages may play a role by producing inflammatory cytokines and nitrogen reactive species [92]. This is illustrated by the carcinogenesis in mycobacterium-infected rats depending on the activity of macrophages [93]. Chronic inflammation may also damage DNA and increase mutation rates in key genes that promote malignant cell proliferation and angiogenesis. A study in South Korean patients with pulmonary adenocarcinoma found that the presence of pre-existing tuberculosis lesions was associated with significantly more epidermal growth factor receptor gene mutations [94]. The fragile histidine triad diadenoside triphosphate gene, a tumour suppressor gene, has also been found to be more frequently affected in lung cancer patients with a tuberculosis infection [95].

Evidence is growing on the long-term health consequences of having tuberculosis [96]. This reviewsuggests a potential higher risk of developing lung cancer, which tuberculosis program managers and clinicians ought to be aware of. However, the finding of increased occurrence of lung cancer in the first2 years after tuberculosis diagnosis could also indicate that some lung cancer cases may have been present at the time of tuberculosis diagnosis, and therefore it is not possible to ascertain causality. Yet, no concrete hard recommendations can be made relating to the programme's organisation for routine post-cure follow-up, screening and early detection. Notwithstanding, in particular in patients with other risk factors for lung cancer, our result prompt sharpening up clinical suspicion during fortuitous re-encounters and reinforcing the possible ensuing diagnostic work-up.

Questions for future research

Further basic research is recommended to better understand the biological mechanisms behind the tuberculosis-subsequent lung cancer association. Linking routine tuberculosis programme databases and cancer registers in countries with reliable health information systems, as well as setting up methodologicallyrigorous longitudinal clinical—epidemiological studies that permit adequate control of potential confounding factors, could enable the identification of which tuberculosis patients (if any) are at the highest risk andfor how long. Eventually, operational research will be needed to sort out how health services can cost-effectively contribute to mitigating that risk.

Provenance: Submitted article, peer reviewed.

Author contributors: J. Cabrera-Sanchez, V. Cuba and L. Otero conceived the study idea. J. Cabrera-Sanchez, V. Cuba, P. Van der Stuyft and L. Otero designed the protocol. J. Cabrera-Sanchez and V. Cuba did the literature search, extracted data and assessed the risk of bias. J. Cabrera-Sanchez and V. Cuba performed the statistical analysis with support from V. Vega and P. Van der Stuyft. J. Cabrera-Sanchez wrote the initial draft of the manuscript. All authors critically revised, provided important conceptual input, and approved the final version of the manuscript. All authors had access to the data.

Data sharing: The data supporting this meta-analysis are from previously reported studies and datasets, which have been cited. The extracted data are available in the supplementary material.

Conflict of interest: The authors have nothing to disclose.

Support statement: The study received financial support from the Institutional Collaboration Framework Agreement IV between the Institute of Tropical Medicine Antwerp, Belgium and Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Peru. L. Otero is supported by an Emerging Global Leader Award from the Fogarty International Center at the National Institutes of Health (K43TW011137). Role of the funding source: The funding source had no role in the design, interpretation, or decision to submit this manuscript. Funding information for this article has been deposited with the Crossref Funder Registry.

References

World Health Organization (WHO). Global Tuberculosis Report 2021. www.who.int/publications/i/item/ 9789240037021. Date last accessed: 15 November 2021.

- 2 Byrne AL, Marais BJ, Mitnick CD, *et al.* Tuberculosis and chronic respiratory disease: a systematic review. *Int J Infect Dis* 2015; 32: 138–146.
- 3 Fiogbe AA, Agodokpessi G, Tessier JF, *et al.* Prevalence of lung function impairment in cured pulmonary tuberculosis patients in Cotonou, Benin. *Int J Tuberc Lung Dis* 2019; 23: 195–202.
- 4 Romanowski K, Baumann B, Basham CA, *et al.* Long-term all-cause mortality in people treated for tuberculosis: a systematic review and meta-analysis. *Lancet Infect Dis* 2019; 19: 1129–1137.
- 5 Sung H, Ferlay J, Siegel RL, *et al.* Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2021; 71: 209–249.
- 6 Engels EA. Inflammation in the development of lung cancer: epidemiological evidence. *Expert Rev Anticancer Ther* 2008; 8: 605–615.
- 7 Brenner DR, Boffetta P, Duell EJ, et al. Previous lung diseases and lung cancer risk: a pooled analysis from the International Lung Cancer Consortium. Am J Epidemiol 2012; 176: 573–585.
- 8 Littman AJ, Thornquist MD, White E, et al. Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes Control 2004; 15: 819–827.
- 9 Engels EA, Shen M, Chapman RS, et al. Tuberculosis and subsequent risk of lung cancer in Xuanwei, China. Int J Cancer 2009; 124: 1183–1187.
- 10 Liang H-Y, Li X-L, Yu X-S, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer 2009; 125: 2936–2944.
- 11 Lin H-H, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. *PLoS Med* 2007; 4: e20.
- 12 Cheng MP, Abou Chakra CN, Yansouni CP, *et al.* Risk of active tuberculosis in patients with cancer: a systematic review and meta-analysis. *Clin Infect Dis* 2017; 64: 635–644.
- 13 Riley RD, Moons KGM, Snell KIE, *et al.* A guide to systematic review and meta-analysis of prognostic factor studies. *BMJ* 2019; 364: k4597.
- 14 Huang J-Y, Jian Z-H, Nfor ON, *et al.* The effects of pulmonary diseases on histologic types of lung cancer in both sexes: a population-based study in Taiwan. *BMC Cancer* 2015; 15: 591.
- 15 An SJ, Kim YJ, Han SS, *et al.* Effects of age on the association between pulmonary tuberculosis and lung cancer in a South Korean cohort. *J Thorac Dis* 2020; 12: 375–382.
- 16 Bae JM, Li ZM, Shin MH, *et al.* Pulmonary tuberculosis and lung cancer risk in current smokers: the Seoul Male Cancer Cohort Study. *J Korean Med Sci* 2013; 28: 896–900.
- 17 Everatt R, Kuzmickiene I, Davidaviciene E, *et al.* Incidence of lung cancer among patients with tuberculosis: a nationwide cohort study in Lithuania. *Int J Tuberc Lung Dis* 2016; 20: 757–763.
- 18 Hong S, Mok Y, Jeon C, et al. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int J Cancer 2016; 139: 2447–2455.
- 19 Jian ZH, Huang JY, Lin FCF, et al. Post-inhaled corticosteroid pulmonary tuberculosis increases lung cancer in patients with asthma. PLoS One 2016; 11: e0159683.
- 20 Kuo SC, Hu YW, Liu CJ, et al. Association between tuberculosis infections and non-pulmonary malignancies: a nationwide population-based study. Br J Cancer 2013; 109: 229–234.
- 21 Lai SW, Liao KF, Chen PC, *et al.* Antidiabetes drugs correlate with decreased risk of lung cancer: a population-based observation in Taiwan. *Clin Lung Cancer* 2012; 13: 143–148.
- Liu SF, Kuo HC, Lin MC, et al. Inhaled corticosteroids have a protective effect against lung cancer in female patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study. Oncotarget 2017; 8: 29711–29721.
- 23 Oh CM, Roh YH, Lim D, *et al.* Pulmonary tuberculosis is associated with elevated risk of lung cancer in Korea: the nationwide cohort study. *J Cancer* 2020; 11: 1899–1906.
- 24 Shebl FM, Engels EA, Goedert JJ, *et al.* Pulmonary infections and risk of lung cancer among persons with AIDS. *J Acquir Immune Defic Syndr* 2010; 55: 375–379.
- 25 Shiels MS, Albanes D, Virtamo J, et al. Increased risk of lung cancer in men with tuberculosis in the alphatocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev 2011; 20:672–678.
- 26 Simonsen DF, Farkas DK, Søgaard M, *et al.* Tuberculosis and risk of cancer: a Danish nationwide cohort study. *Int J Tuberc Lung Dis* 2014; 18: 1211–1219.
- 27 Wu CY, Hu HY, Pu CY, *et al.* Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. *Cancer* 2011; 117: 618–624.
- 28 Wu MF, Jian ZH, Huang JY, *et al.* Post-inhaled corticosteroid pulmonary tuberculosis and pneumonia increases lung cancer in patients with COPD. *BMC Cancer* 2016; 16: 778.
- 29 Yeo Y, Shin DW, Han K, *et al.* Individual 5-year lung cancer risk prediction model in Korea using a nationwide representative database. *Cancers* 2021; 13: 3496.
- 30 Yu YH, Liao CC, Hsu WH, *et al.* Increased lung cancer risk among patients with pulmonary tuberculosis: a population cohort study. *J Thorac Oncol* 2011; 6: 32–37.

- 31 Alavanja MCR, Brownson RC, Boice JD Jr, et al. Preexisting lung disease and lung cancer among nonsmoking women. Am J Epidemiol 1992; 136: 623–632.
- 32 Bodmer M, Becker C, Jick SS, *et al.* Metformin does not alter the risk of lung cancer: a case-control analysis. *Lung Cancer* 2012; 78: 133–137.
- 33 Brenner AV, Wang Z, Kleinerman RA, *et al.* Previous pulmonary diseases and risk of lung cancer in Gansu Province, China. *Int J Epidemiol* 2001; 30: 118–124.
- 34 Brenner DR, Hung RJ, Tsao MS, *et al.* Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors. *BMC Cancer* 2010; 10: 285.
- 35 Brownson RC, Alavanja MC. Previous lung disease and lung cancer risk among women (United States). *Cancer Causes Control* 2000; 11: 853–858.
- 36 Chan-Yeung M, Koo LC, Ho JCM, *et al.* Risk factors associated with lung cancer in Hong Kong. *Lung Cancer* 2003; 40: 131–140.
- 37 Cheng MH, Chiu HF, Ho SC, et al. Statin use and the risk of female lung cancer: a population-based case-control study. Lung Cancer 2012; 75: 275–279.
- 38 Chen GL, Guo L, Yang S, *et al.* Cancer risk in tuberculosis patients in a high endemic area. *BMC Cancer* 2021; 21: 679.
- 39 Galeone C, Pelucchi C, La Vecchia C, et al. Indoor air pollution from solid fuel use, chronic lung diseases and lung cancer in Harbin, Northeast China. Eur J Cancer Prev 2008; 17: 473–478.
- 40 Hinds MW, Cohen HI, Kolonel LN. Tuberculosis and lung cancer risk in nonsmoking women. *Am Rev Respir Dis* 1982; 125: 776–778.
- 41 Hosgood HD III, Chapman RS, He X, *et al.* History of lung disease and risk of lung cancer in a population with high household fuel combustion exposures in rural China. *Lung Cancer* 2013; 81: 343–346.
- 42 Ko YC, Lee CH, Chen MJ, *et al.* Risk factors for primary lung cancer among non-smoking women in Taiwan. *Int J Epidemiol* 1997; 26: 24–31.
- 43 Koshiol J, Rotunno M, Consonni D, *et al.* Lower risk of lung cancer after multiple pneumonia diagnoses. *Cancer Epidemiol Biomarkers Prev* 2010; 19: 716–721.
- 44 Kreuzer M, Gerken M, Kreienbrock L, *et al.* Lung cancer in lifetime nonsmoking men results of a case-control study in Germany. *Br J Cancer* 2001; 84: 134–140.
- 45 Kreuzer M, Heinrich J, Kreienbrock L, *et al.* Risk factors for lung cancer among nonsmoking women. *Int J Cancer* 2002; 100: 706–713.
- 46 Lai SW, Liao KF, Lin CH, *et al.* Parkinson's disease and lung cancer: a population-based case-control study in Taiwan. *Geriatr Gerontol Int* 2013; 13: 238–240.
- 47 Lai SW, Lai HC, Lin CL, *et al.* Statin use and risk of lung cancer in males: a case-control study in Taiwan. *Kuwait Med J* 2013; 45: 207–210.
- 48 Lee CH, Ko YC, Cheng LSC, et al. The heterogeneity in risk factors of lung cancer and the difference of histologic distribution between genders in Taiwan. Cancer Causes Control 2001; 12: 289–300.
- 49 Liang H, Guan P, Yin Z, *et al.* Risk of lung cancer following nonmalignant respiratory conditions among nonsmoking women living in Shenyang, Northeast China. *J Womens Health* 2009; 18: 1989–1995.
- 50 Lim WY, Chen Y, Ali SM, *et al.* Polymorphisms in inflammatory pathway genes, host factors and lung cancer risk in Chinese female never-smokers. *Carcinogenesis* 2011; 32: 522–529.
- 51 Liu Q, Sasco AJ, Riboli E, *et al.* Indoor air pollution and lung cancer in Guangzhou, People's Republic of China. *Am J Epidemiol* 1993; 137: 145–154.
- 52 Lo YL, Hsiao CF, Chang GC, *et al.* Risk factors for primary lung cancer among never smokers by gender in a matched case-control study. *Cancer Causes Control* 2013; 24: 567–576.
- 53 Luo RX, Wu B, Yi YN, *et al.* Indoor burning coal air pollution and lung cancer a case-control study in Fuzhou, China. *Lung Cancer* 1996; 14: Suppl. 1, S113–S119.
- 54 Mayne ST, Buenconsejo J, Janerich DT. Previous lung disease and risk of lung cancer among men and women nonsmokers. *Am J Epidemiol* 1999; 149: 13–20.
- 55 Osann KE, Lowery JT, Schell MJ. Small cell lung cancer in women: risk associated with smoking, prior respiratory disease, and occupation. *Lung Cancer* 2000; 28: 1–10.
- 56 Park SK, Cho LY, Yang JJ, *et al.* Lung cancer risk and cigarette smoking, lung tuberculosis according to histologic type and gender in a population based case-control study. *Lung Cancer* 2010; 68: 20–26.
- 57 Ramanakumar AV, Parent ME, Menzies D, *et al.* Risk of lung cancer following nonmalignant respiratory conditions: evidence from two case-control studies in Montreal, Canada. *Lung Cancer* 2006; 53: 5–12.
- 58 Raspanti GA, Hashibe M, Siwakoti B, et al. Household air pollution and lung cancer risk amongneversmokers in Nepal. Environ Res 2016; 147: 141–145.
- 59 Samet JM, Humble CG, Pathak DR. Personal and family history of respiratory disease and lung cancer risk. *Am Rev Respir Dis* 1986; 134: 466–470.
- 60 Schwartz AG, Yang P, Swanson GM. Familial risk of lung cancer among nonsmokers and their relatives. Am J Epidemiol 1996; 144: 554–562.

- 61 Seow A, Poh WT, Teh M, *et al.* Diet, reproductive factors and lung cancer risk among Chinese women in Singapore: evidence for a protective effect of soy in nonsmokers. *Int J Cancer* 2002; 97: 365–371.
- 62 Wang SY, Hu YL, Wu YL, *et al.* A comparative study of the risk factors for lung cancer in Guangdong, China. *Lung Cancer* 1996; 14: Suppl. 1, S99–S105.
- 63 Wang TJ, Zhou BS, Shi JP. Lung cancer in nonsmoking Chinese women: a case-control study. *Lung Cancer* 1996; 14: Suppl. 1, S93–S98.
- 64 Wang XR, Yu ITS, Chiu YL, *et al.* Previous pulmonary disease and family cancer history increase the risk of lung cancer among Hong Kong women. *Cancer Causes Control* 2009; 20: 757–763.
- 65 Wang X, Hu JF, Tan Y, *et al.* Cancer stem cell marker Musashi-1 rs2522137 genotype is associated with an increased risk of lung cancer. *PLoS One* 2014; 9: e95915.
- 66 Wu AH, Yu MC, Thomas DC, *et al.* Personal and family history of lung disease as risk factors for adenocarcinoma of the lung. *Cancer Res* 1988; 48: 7279–7284.
- 67 Wu AH, Fontham ETH, Reynolds P, *et al.* Previous lung disease and risk of lung cancer among lifetime nonsmoking women in the United States. *Am J Epidemiol* 1995; 141: 1023–1032.
- 68 Wu-Williams A, Dai X, Blot W, et al. Lung cancer among women in north-east China. Br J Cancer 1990; 62: 982–987.
- 69 Yang L, Lu X, Deng J, *et al.* Risk factors shared by COPD and lung cancer and mediation effect of COPD: two center case–control studies. *Cancer Causes Control* 2015; 26: 11–24.
- 70 Zatloukal P, Kubík A, Pauk N, et al. Adenocarcinoma of the lung among women: risk associated with smoking, prior lung disease, diet and menstrual and pregnancy history. *Lung Cancer* 2003; 41: 283–293.
- 71 Zheng W, Blot WJ, Liao ML, *et al.* Lung cancer and prior tuberculosis infection in Shanghai. *Br J Cancer* 1987; 56: 501–504.
- 72 Zhou BS, Wang TJ, Guan P, *et al.* Indoor air pollution and pulmonary adenocarcinoma among females: a case-control study in Shenyang, China. *Oncol Rep* 2000; 7: 1253–1259.
- 73 Boice J, Fraumeni JF. Late effects following isoniazid therapy. Am J Public Health 1980; 70: 987–989.
- 74 Chen SY, Hayes RB, Liang SR, *et al.* Mortality experience of haematite mine workers in China. *Br J Ind Med* 1990; 47: 175–181.
- 75 Christensen ASH, Roed C, Andersen PH, *et al.* Long-term mortality in patients with pulmonary and extrapulmonary tuberculosis: a Danish nationwide cohort study. *Clin Epidemiol* 2014; 6: 405–421.
- 76 Davis FG, Boice JD, Hrubec Z, *et al.* Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. *Cancer Res* 1989; 49: 6130–6136.
- 77 Fløe A, Hilberg O, Wejse C, et al. Comorbidities, mortality and causes of death among patients with tuberculosis in Denmark 1998–2010: a nationwide, register-based case-control study. Thorax 2018; 73: 70–77.
- 78 Gao YT, Zheng W, Jin F, et al. Retrospective cohort study on association of lung cancer with pulmonary tuberculosis. J Epidemiol 1992; 2: S83–S88.
- 79 Leung CC, Hui L, Lee RSY, *et al.* Tuberculosis is associated with increased lung cancer mortality. *Int J Tuberc Lung Dis* 2013; 17: 687–692.
- 80 Merlo F, Fontana L, Reggiardo G, et al. Mortality among silicotics in Genoa, Italy, from 1961 to 1987. Scand J Work Environ Health 1995; 21: S77–S80.
- 81 Ng TP, Chan SL, Lee J. Mortality of a cohort of men in a silicosis register: further evidence of an association with lung cancer. *Am J Ind Med* 1990; 17: 163–171.
- 82 Sasaki R, Sakurai R, Aoki K, *et al.* Cohort study on association of malignant neoplasms among the pulmonary tuberculosis patients in Nagoya TB registry. *J Epidemiol* 1992; 2: S89–S95.
- 83 Fu HJ, Gou J. Research on causes of lung cancer: case–control study of 523 cases of lung cancer. *Can J Public Health* 1984; 75: 161–165.
- 84 Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. *Lung Cancer* 2004; 45: S3–S9.
- 85 Patra J, Bhatia M, Suraweera W, et al. Exposure to second-hand smoke and the risk of tuberculosis in children and adults: a systematic review and meta-analysis of 18 observational studies. PLoS Med 2015; 12: e1001835.
- 86 World Health Organization (WHO). Global Tuberculosis Report 2020. 2020. www.who.int/publications/i/item/ 9789240013131. Date last accessed: 15 November 2021.
- 87 Hovanec J, Siemiatycki J, Conway DI, et al. Lung cancer and socioeconomic status in a pooled analysis of case-control studies. PLoS One 2018; 13: e0192999.
- 88 Manser R, Lethaby A, Irving LB, *et al.* Screening for lung cancer. *Cochrane Database Syst Rev* 2013; 6: CD001991.
- 89 Shu C-C, Chang S-C, Lai Y-C, *et al.* Factors for the early revision of misdiagnosed tuberculosis to lung cancer: a multicenter study in a tuberculosis-prevalent area. *J Clin Med* 2019; 8: 700.
- 90 Oken MM, Hocking WG, Kvale PA, *et al.* Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. *JAMA* 2011; 306: 1865–1873.

- 91 ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. *Ann Epidemiol* 1994; 4: 1–10.
- 92 Nalbandian A, Yan BS, Pichugin A, et al. Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control. Oncogene 2009; 28: 1928–1938.
- 93 Li J, Pan Y, Zhang B, *et al.* Macrophages are needed in the progression of tuberculosis into lung cancer. *Tumour Biol* 2015; 36: 6063–6066.
- 94 Hwang K, Paik SS, Lee SH. Impact of pulmonary tuberculosis on the EGFR mutational status and clinical outcome in patients with lung adenocarcinoma. *Cancer Res Treat* 2019; 51: 158–168.
- 95 Song L, Yan W, Zhao T, *et al. Mycobacterium tuberculosis* infection and FHIT gene alterations in lung cancer. *Cancer Lett* 2005; 219: 155–162.
- 96 van Kampen SC, Wanner A, Edwards M, *et al.* International research and guidelines on post-tuberculosis chronic lung disorders: a systematic scoping review. *BMJ Glob Health* 2018; 3: e000745.

SUPPLEMENTARY MATERIAL

LUNG CANCER OCCURRENCE AFTER AN EPISODE OF TUBERCULOSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS

AUTHORS

Cabrera-Sanchez J, Cuba V, Vega V, Van der Stuyft P, Otero L

TABLE OF CONTENTS

Appendix 1. PRISMA 2020 checklist

Appendix 2. Search strategy

Appendix 3. Modified Newcastle-Ottawa Quality Assessment Scale

Appendix 4. Rationale for changes to the Newcastle-Ottawa Quality Assessment Scale

Appendix 5. Flow diagram of study selection into the meta-analysis models

Appendix 6. Summary of the characteristic of the studies included in the systematic review

Appendix 7. Characteristics of included studies

Table 1. Characteristic of included cohort studies that report lung cancer diagnosis as the outcome

Table 2. Characteristic of included case-control studies that report lung cancer diagnosis as the outcome

Table 3. Characteristic of included cohort studies that report lung cancer mortality as the outcome

Table 4. Characteristic of included case-control studies that report lung cancer mortality as the outcome

Appendix 8. Risk of Bias assessment of included studies

Table 1. Risk of bias of included cohort studies for the lung cancer diagnosis outcome

Table 2. Risk of bias of included case-control studies for the lung cancer diagnosis outcome

Table 3. Risk of bias of included cohort studies for the lung cancer mortality outcome

Table 4. Risk of bias of included case-control studies for the lung cancer mortality outcome

Appendix 9. Results of individual studies

Table 1. Effect size estimates of lung cancer diagnosis risk among persons with a previous episode of TB in cohort studies Table 2. Effect size estimates of lung cancer diagnosis risk among persons with a previous episode of TB in case-control studies

Table 3. Effect size estimates of lung cancer mortality risk among persons with a previous episode of TB in cohort studies

Table 4. Effect size estimates of lung cancer mortality risk among persons with a previous episode of TB in case-control studies Appendix 10. Additional forest plots

Figure 1. Forest plot for the association between tuberculosis and subsequent lung cancer diagnosis among cohort studies (model 1)

Figure 2. Forest plot for the association between tuberculosis and subsequent lung cancer diagnosis among case-control studies (model 1)

Figure 3. Forest plot for the association between tuberculosis and subsequent lung cancer mortality among cohort studies (model 1)

Figure 4. Forest plot for the association between tuberculosis and subsequent lung cancer mortality among cohort studies (model 2)

Appendix 11. Effect estimates between tuberculosis and lung cancer diagnosis from the three cohort studies included reporting by latency strata

Appendix 12. Pooled adjusted estimates from cohort studies excluding lung cancer cases detected within one or two years of tuberculosis diagnosis

Appendix 13. Funnel plots

Figure 1. Adjusted estimates from cohort studies that report the association between tuberculosis and lung cancer diagnosis Figure 2. Adjusted estimates from case-control studies that report the association between tuberculosis and lung cancer diagnosis

Figure 3. Adjusted estimates from cohort studies that report the association between tuberculosis and lung cancer mortality Appendix 14. GRADE assessment of the evidence

Appendix 15. List of variables adjusted for in multivariate analyses by included studies

Appendix 16. Amendments to the protocol

Appendix 17. List of excluded studies with reasons

Appendix 1. PRISMA checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Tittle
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Summary
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Introduction
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Introduction
METHODS	-		
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Methods (Search strategy and inclusion criteria)
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Methods (Search strategy and inclusion criteria)
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Appendix 2
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Methods (Search strategy and inclusion criteria)
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Methods (Data extraction and risk of bias assessment)
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Methods (Data extraction and risk of bias assessment)

Section and Topic	ltem #	Checklist item	Location where item is reported
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Methods (Data extraction and risk of bias assessment)
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Methods (Data extraction and risk of bias assessment), Appendix 3 and 4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Methods (Statistic analysis)
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Methods (Statistic analysis)
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Methods (Statistic analysis)
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Methods (Statistic analysis)
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Methods (Statistic analysis)
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Methods (Statistic analysis)
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Methods (Statistic analysis)
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Methods (Statistic analysis)
Certainty	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Methods

Section and Topic	ltem #	Checklist item	Location where item is reported
assessment			(Statistic analysis)
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Results, figure 1; Appendix 6
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Appendix 16
Study characteristics	17	Cite each included study and present its characteristics.	Results; Appendix 7
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Appendix 8
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Appendix 9
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Results; Discussion
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Results; Tables 1 and 2; Appendix 10
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Table 2
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Tables 1 and 2
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Appendix 12
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Appendix 13
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Discussion
	23b	Discuss any limitations of the evidence included in the review.	Discussion
	23c	Discuss any limitations of the review processes used.	Discussion
	23d	Discuss implications of the results for practice, policy, and future research.	Discussion
OTHER INFORMATIO	ON		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Methods
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Methods
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Appendix 15

Section and Topic	ltem #	Checklist item	Location where item is reported
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Role of the funding source
Competing interests	26	Declare any competing interests of review authors.	Declaration of interests
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Data sharing

Appendix 2. Search strategy

Search strategy: PubMed

- Search tuberculosis[MeSH Terms] 1.
- Search tuberculosis[Title/Abstract] 2.
- Search mycobacterium[Title/Abstract] 3.
- Search "tb"[Title/Abstract] 4.
- Search "tbc"[Title/Abstract] 1 OR 2 OR 3 OR 4 OR 5 5.
- 6.
- Search lung neoplasm[MeSH Terms] 7.
- Search lung cancer[MeSH Terms] 8.
- Search lung cancer*[Title/Abstract] 9. Search lung neoplasm*[Title/Abstract]
- 10.
- Search lung carcinoma*[Title/Abstract] 11.
- 12. Search lung tumor*[Title/Abstract]
- 13. Search pulmonary cancer*[Title/Abstract]
- 14. Search pulmonary neoplasm*[Title/Abstract]
- Search pulmonary carcinoma*[Title/Abstract]
 Search pulmonary tumor*[Title/Abstract]
- 17. Search "cancer of the lung"[Title/Abstract]
 18. Search "neoplasm of the lung"[Title/Abstract]
- 19. Search "tumor of the lung"[Title/Abstract]
- 20. 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18 OR 19
- 21. 6 AND 20
- Search ("case reports"[Publication Type] OR "comment*"[Publication Type] OR 22.
- "Autobiography"[Publication Type] OR "Biography"[Publication Type] OR "legal case"[Publication Type]) 23. 21 NOT 22

Filters: Publication date from 1980/01/01 to 2020/06/24; English; French; Spanish

Search strategy: Scopus

1. TITLE-ABS-KEY ("tuberculosis")

- 2. TITLE-ABS-KEY ("mycobacterium infection")
- 3. 1 OR 2
- 4. TITLE-ABS-KEY ("lung cancer")
- 5. TITLE-ABS-KEY ("lung neoplasm")
- 6. TITLE-ABS-KEY ("lung tumor")
- 7. TITLE-ABS-KEY ("lung carcinoma")
- 8. TITLE-ABS-KEY ("lung adenocarcinoma")
- 9. TITLE-ABS-KEY ("pulmonary cancer")
- 10. TITLE-ABS-KEY ("pulmonary neoplasm")
- 11. TITLE-ABS-KEY ("pulmonary tumor")
- 12. TITLE-ABS-KEY ("pulmonary carcinoma")
- 13. TITLE-ABS-KEY ("pulmonary adenocarcinoma")
- 14. TITLE-ABS-KEY ("cancer of the lung")
- 15. TITLE-ABS-KEY ("cancer of lung")
- 16. TITLE-ABS-KEY ("neoplasm of the lung")
- 17. TITLE-ABS-KEY ("neoplasm of lung")
- 18. TITLE-ABS-KEY ("tumor of lung")
- 19. TITLE-ABS-KEY ("tumor of the lung")))
- 20. 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18 OR 19
- 21. 3 AND 20

Filters:

22. LIMIT-TO (DOCTYPE , "ar") 23. LIMIT-TO (DOCTYPE , "re") 24. LIMIT-TO (DOCTYPE , "le") 25. 22 OR 23 OR 24 26. LIMIT-TO (SUBJAREA , "MEDI") 27. LIMIT-TO (SUBJAREA , "BIOC") 28. LIMIT-TO (SUBJAREA , "IMMU") 29. 26 OR 27 OR 28 30. LIMIT-TO (LANGUAGE , "English") 31. LIMIT-TO (LANGUAGE , "French") 32. LIMIT-TO (LANGUAGE , "Spanish") 33. 30 OR 31 OR 32 34. LIMIT-TO (PUBYEAR , 1980-2021) 35. 25 AND 29 AND 33 AND 34

Search strategy: Lilacs

- tw:(tuberculosis) OR
- 1. 2. tw:(mycobacterium tuberculosis) OR
- tw:("TB") OR 3.
- 4. tw:(mycobacterium infection)
- 1 OR 2 OR 3 OR 4 5.
- 6. tw:(lung cancer) OR
- tw:(lung neoplasm) OR 7.
- tw:(small cell carcinoma) OR 8.
- tw:(lung tumor) OR 9.
- 10. tw:(lung malignancy) OR
- 11. tw:("cancer of the lung") OR
- 12. tw:(non-small cell carcinoma)
- 13. 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12
- 14. 5 AND 13

Search strategy: Scielo

- ti:(tuberculosis) OR 1.
- 2. ab:(tuberculosis) OR
- ti:(TB) OR 3.
- 4. ab:(TB) OR
- ti:(mycobacterium infection) 5.
- 6. ab:(mycobacterium infection)
- 1 OR 2 OR 3 OR 4 OR 5 OR 6 7.
- 8. ti:(lung cancer)
- ab:(lung cancer) 9.
- 10. ti:(lung neoplasm)11. ab:(lung neoplasm)
- 12. ti:(lung tumor)
- 13. ab:(lung tumor)
- 14. ti:(lung malignancy)
- 15. ab:(lung malignancy)
- 16. 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15

Search strategy: Cochrane

#1: (tuberculosis):ti,ab,kw OR (TB):ti,ab,kw OR ("Mycobacterium"):ti,ab,kw #2: ("lung cancer"):ti,ab,kw OR ("lung neoplasm"):ti,ab,kw OR ("lung adenocarcinoma cell"):ti,ab,kw OR ("small cell lung cancer"):ti,ab,kw OR ("non small cell lung cancer"):ti,ab,kw

#3: #1 AND #2

The search strategy was developed by LO (MD, PhD), JACS (medical student) and VC (medical student).

Appendix 3. Modified Newcastle-Ottawa Quality Assessment Scale (NOS) Modified Newcastle - Ottawa Quality Assessment Scale Cohort Studies

Selection

1) Representativeness of the exposed cohort

a) truly representative (one star)

b) somewhat representative (one star)

c) selected group of users

d) no description of the derivation of the cohort

2) Selection of the non exposed cohort

a) drawn from the same community as the exposed cohort (one star)

b) drawn from a different source

c) no description of the derivation of the non exposed cohort

3) Ascertainment of exposure

a) Bacteriologically confirmed TB episode, from NTP/medical records (two stars)

- b) Bacteriologically confirmed episode, from a structured interview (one star)
- c) Clinically diagnosed TB episode from NTP/medical records (one star)

d) Structured interview with no information on bacteriological diagnosis

e) Self-report

f) No description

g) Other

4) Attempt to Demonstrate that outcome of interest was not present at start of study

a) yes (excluded cases occurring in the first year after the tuberculosis diagnosis or performed latency analysis) (one star) b) no

Comparability

1) Comparability of cohorts on the basis of the design or analysis

a) study controls age AND smoking (two stars)

b) study controls for age OR smoking (one star)

Outcome

- 1) Assessment of outcome
- a) Pathological (histological or cytological) diagnosis (for at least 80% of all lung cancer cases) (one star)
- b) No pathological diagnosis in more than 80% cases.
- c) No description
- d) Other

2) Was follow-up long enough for outcomes to occur

a) yes (>5 years) (one star)

b) no

3) Adequacy of follow up of cohorts

a) complete follow up - all subjects accounted for (one star)

b) subjects lost to follow up unlikely to introduce bias - number lost less than or equal to 20%, or description of those lost

suggested no difference from those followed-up (one star)

c) Evidence of selective losses

d) Follow-up rate less than 80% and no description of those lost

e) No statement

Overall risk of bias for cohort studies:

Low risk of	4 or 5 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome
bias	domain
Moderate	2 or 3 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome
risk of bias	domain
High risk of	0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome domain
bias	

Newcastle - Ottawa Quality Assessment Scale **Case Control Studies**

Selection

- 1) Is the case definition adequate?
- a) Yes, with pathological evidence (one star)
- b) No pathological evidence
- c) No description
- 2) Representativeness of the cases
- a) consecutive or obviously representative series of cases (one star)
- b) potential for selection biases or not stated

3) Selection of Controls

- a) community controls (one star)
- b) hospital controls
- c) no description

4) Definition of Controls

- a) no history of disease (lung cancer) (one star)
- b) no description of source

Comparability

- 1) Comparability of cases and controls on the basis of the design or analysis
- a) study controls age AND smoking (two stars)
- b) study controls for age OR smoking (one star)

Exposure

- 1) <u>Ascertainment of exposure</u>
 a) Linked record with NTP database with bacteriological confirmation (>80%) (two stars)
- b) Linked record with NTP database without bacteriological confirmation (one star)
- c) Structured interview where blind to case-control status (one star)

d) Interview not blinded or written self-report

e) No description

- 2) Same method of ascertainment for cases and controls
- a) yes (one star)
- b) no

3) Non-Response rate

- a) Similar for both groups and total response rate >80% (one star)
- b) Non-response selective to one group
- c) Total response rate <80%
- d) No description

Overall risk of bias for case-control studies:

Low risk of	3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 3 or 4 stars in exposure
bias	domain
Moderate	2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 stars in exposure domain
risk of bias	
High risk of	0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in exposure domain
bias	

Ap	Appendix 4. Rationale for changes to the Newcastle-Ottawa Scale								
	Cohort studies								
	Original scale	Adapted scale	Rationale for changes						
Sol	laction								
56									
1	Representativeness of the exposed cohort	No changes made							
	 A. Truly representative (one star) B. Somewhat representative (one star) C. Selected group D. No description of the derivation of the cohort 								
2	Selection of the non-exposed cohort A. Drawn from the same community as the exposed cohort (one star) B. Drawn from a different source C. No description of the derivation of the non-exposed cohort	No changes made							
3	Ascertainment of exposure A. Secure record (e.g., surgical record) (one star) B. Structured interview (one star) C. Written self-report D. No description E. Other	Ascertainment of exposure A. Bacteriologically confirmed TB episode, from NTP/medical records (two star) B. Bacteriologically confirmed TB episode, from structured interview (one star) C. Clinically diagnosed TB episode from NTP/medical records (one star) D. Structured interview with no information on bacteriological diagnosis E. Self-report with no further information on the TB symptoms or diagnosis F. No description G. Other	When the episode of TB is bacteriologically confirmed, we can be almost certain that it was active TB and not an early manifestation of lung cancer. This is more reliable if it has been ascertained from a NTP or medical record. An interview is less reliable to ascertain if a diagnosis was made bacteriologically Clinical or radiological TB diagnosis is less accurate since TB and lung cancer may share symptoms and radiological findings.						
4	Demonstration that outcome of interest was not present at start of study A. Yes, no history of endpoint (one star) B. No	 4) <u>Attempt to Demonstrate that</u> outcome of interest was not present at start of study A. Yes (excluded cases occurring in the first year after the tuberculosis diagnosis or performed latency analysis) (one star) B) No 	Ascertain that a TB patient did not have lung cancer is very difficult to even using imaging. Therefore, we allow for a period one years between the TB diagnosis and the cancer diagnosis. If less, the cancer could have been present.						
Co	Comparability								

1	Comparability of cohorts on the basis of the design or analysis controlled for confounders A. The study controls for the most important factor (one star) B. Study controls for any additional important factor (list) (one star) C. Cohorts are not comparable on the basis of the design or analysis controlled for confounders	Comparability of cohorts on the basis of the design or analysis controlled for confounders A. The study controls for age AND smoking (two star) B. The study controls for age OR smoking (one star) C. The study controls for other factors only) D. Cohorts are not comparable on the basis of the design or analysis controlled for confounders	We considered a study should control for age and smoking for it to be pooled in the adjusted effects meta-analysis. These variables were chosen from a larger list of potential cofounders after considering epidemiological evidence (see "DAG and references") Smoking and age are the main (ref) risk factors for lung cancer. Studies controlling for both, have more comparable cohorts, than those controlling for age or for other factors only.
Ou	tcome		
1	Assessment of outcome A. Independent blind assessment (one star) B. Record linkage (one star) C. Self-report D. No description E. Other	Assessment of outcome A. Pathological diagnosis (for at least 80% of all lung cancer diagnoses) (one star) B. No pathological diagnosis F. No description G. Other	Since TB and lung cancer may share clinical features, we consider it necessary that the diagnosis of lung cancer is made based on pathological evidence. Otherwise, a recurrence or sequel of TB may be misdiagnosed as lung cancer.
2	Was follow-up long enough for outcomes to occur A. Yes (one star) B. No Indicate the median duration of follow-up and a brief rationale for the assessment above:	Was follow-up long enough for outcomes to occur A. Yes (>= 5 years on average) (one star) B. No	

3	Adequacy of follow-up of cohorts A. Complete follow-up- all subject accounted for (one star) B. Subjects lost to follow-up unlikely to introduce bias – number lost less than or equal to 20% or description of those lost suggested no different from those followed. (one star) C. Follow-up rate less than 80% and no description of those lost D. No statement	Adequacy of follow-up of cohorts A. Complete follow-up- all subject accounted for (one star) B. Subjects lost to follow-up unlikely to introduce bias - number lost less than or equal to 20%. (one star) C. losses are clearly selective to one group D. Follow-up rate less than 80% and no description of those lost E. No statement	A study where losses are relatively sm selective to one group may also introd	all but uce bias.
Ove	erall risk of bias			
	Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome domain Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome domain Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome domain	Low risk of bias: 4 or 5 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome domain Moderate risk of bias: 2 or 3 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome domain High risk of bias: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome domain	Adapted to the changes in stars assigned to ascertainment of exposure (because this item can receive up to two stars instead of only one in the original scale). We substituted the terms related to "quality" for "risk of bias" as suggested by current systematic review guidelines.	
	Adapted Newcastle-Ottawa So	cale for case-control studies		
	Original scale	Adapted scale	Rationale for changes	
Se	election			
1	Is the case definition adequate? A. Yes, with independent validation (one star) B. Based on record linkage or based on self-reports C. No description	Is the case definition adequate? A. Yes, with pathological evidence (one star) B. Attempt to independently validate but not enough pathological evidence C. Based on record linkage D. Based on self-reports E. No description	Since TB and lung cancer may share clinical and radiological features, we consider it necessary that the diagnosis of lung cancer is made based on pathological evidence. Otherwise, a recurrence or sequel of TB may be misdiagnosed.	
2	Representativeness of the cases	No changes made		
------	---	--	--	
	A. Consecutive or obviously representative series of cases (one star)B. Potential for selection biases or not stated			
3	Selection of Controls	No changes made		
	This item assesses whether the control series used in the study is derived from the same population as the cases and essentially would have been cases had the outcome been present.			
	A. Community controls (one			
	B. Hospital controls or other health service controls C. No description			
4	Definition of Controls	Definition of Controls		
	A. No history of disease (endpoint) (one star)B. No description of source	A. No history of lung cancer (one star) B. No description of source		
Com	parability			
1				
Expo	Comparability of cases and controls on the basis of the design or analysis controlled for confounders A. The study controls for the most important factor (one star) B. Study controls for any additional important factor (list) (one star) C. Cases and controls are not comparable on the basis of the design or analysis controlled for confounders	Comparability of cases and controls on the basis of the design or analysis controlled for confounders A. The study controls* for age AND smoking (two star) B. The study controls* for age OR smoking (one star) C. Study controls* for other predefined factors (socioeconomic status, passive smoking, chronic bronchitis or emphysema) D. Cases and controls are not comparable on the basis of the design or analysis controlled for confounders *if controls were matched to cases, matched analysis needs to be conducted, in order for the factors to be controlled.(not for frequency matching)	We considered a study should control for age, and smoking for it to be pooled in the adjusted effects meta-analysis. These variables were chosen from a larger list of potential cofounders after considering epidemiological evidence	
Expo				
1	Assessment of exposure A. Secure record (one star) B. Structured interview where blind to case/control status (one star) C. Interview not blinded D. Written self-report or medical record only	 Assessment of exposure A. Linked record with NTP database with bacteriological confirmation (>80%) (two star) B. Linked record with NTP database without 	When the episode of TB is bacteriologically confirmed, we can be almost certain that it was active TB and not an early manifestation of lung cancer misdiagnosed as TB. Diagnosis of TB based on clinical or radiological criteria is less accurate since TB and lung cancer	

	E. No description	bacteriological confirmation (one star). C. Structured interview where blind to case/control status (one star) D. Interview not blinded or written self-report E. No description (bacteriological confirmation of exposure would be ideal, but unlikely to be complete for all)	may share symptoms and radiological findings. An interview is less reliable to ascertain if a diagnosis was made bacteriologically and it is also prone to recall bias
2	Same method of ascertainment for cases and controls A. Yes (one star) B. No	No changes made	
3	Non-response rate A. Same for both groups (one star) B. Non respondents described C. Rate different and no designation	Non-response rate (or not possible to link? Which is different to "not linked") A. Similar for both groups and total response rate >80% and description of non-respondents suggests no difference from respondents. (one star) B. Non-response selective to one group C. Total response rate <80% C. No description	A study where overall non- response rate is relatively small but selective to either cases or controls may introduce bias.
Over	all risk of bias		
	Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in exposure domain Fair quality: 2 stars in selection domain AND 1 or	Low risk of bias: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 3 or 4 stars in exposure domain Moderate risk of bias: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 stars in exposure domain	
	2 stars in comparability domain AND 2 or 3 stars in exposure domain Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in exposure domain	High risk of bias: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in exposure domain	

Appendix 5. Flow diagram of study selection into the meta-analysis models

	Cohorts studies	Case-control studies
	(n)	(n)
Lung cancer diagnosis	19 studies	43 studies
Study setting	Taiwan (8), South Korea (5), USA (2), China (1), Denmark (1), Finland (1), Lithuania (1)	China (16), USA (9), Taiwan (6), Canada (3), Singapore (2), Germany (2), South Korea (1), Nepal (1), Czech Republic (1), Italy (1), United Kingdom (1)
Publication date	1980-1999 (0), 2000-2009 (3), 2010-2021 (16)	1980-1999 (14), 2000-2009 (15), 2010-2021 (14)
Risk of bias	Low (7), moderate (10), high (2)	Low (5), moderate (15), high (23)
Main variables	Smoking (7), age (18), sex (18), any	Smoking (32), age (25), sex (32), any socioeconomic
adjusted for*	socioeconomic status indicator [†] (6), any comorbidity (10), passive smoking (0)	status indicator* (2), any comorbidity (6), passive smoking (6)
Lung cancer	12 studies	1 study
mortality		
Study setting	China (5), USA (2), Denmark (2), Japan (1), South Korea (1), Italy (1)	China (1)
Publication date	1980-1999 (7), 2000-2009 (1), 2010-2021 (4)	1980-1999 (1), 2000-2009 (0), 2010-2021 (0)
Risk of bias	Low (4), moderate (1), high (7)	Low (0), moderate (0), high (1)
Main variables	Smoking (3), age (2), sex (8), any	None
adjusted for*	socioeconomic status indicator [†] (2), any	
-	comorbidity (6), passive smoking (1)	

Appendix 6. Summary of the characteristic of the studies included in the systematic review 'The variables controlled for in each individual study as well as the number of times each variable was adjusted for by the

included studies can be found in appendix 9 and 15. [†]Either income, education or occupation

Appendix 7. Characteristics of included studies Table 1. Characteristic of included cohort studies that report lung cancer diagnosis as the outcome

Study	Study setting (location, country)	Study population	Number of participants	Ascertainment of TB / source	Comparator group	Ascertainment of lung cancer / source	Recruitme nt period	Follow-up duration	Factors adjusted for
An et al (2020)	South Korea	General population, A representative sample established by the National Health Insurance Service (NHIS)	22 656	Only record linkage / NHIS database	Five matched people without TB according to the same database	Only record linkage / NHIS database	2003-2013	Follow-up until 2013	Adjustment for smoking status (ever smoker, ex-smoker or current smoker), age, sex and household income
Bae et al (2013)	Seoul, South Korea	Representative sample of current male smokers	7 009	Interview / Seoul Male Cancer Cohort (SMCC)	Males without history of TB from the same cohort	Only record linkage / Seoul Regional Cancer Registry (SRCR), the Korea Central Cancer Registry (KCCR) and death certificates at Statistics Korea	1992-1993	99 965 person-years; follow-up until 2008	Adjustment for age, intake of tomatoes and coffee
Engels et al (2009)	Xuanwei, China	Farmers	42 422	Interview	Farmers without history of TB from the same community	Death records from hospitals, public security bureaus and public health bureaus	1976-1992	Follow-up until 1996	None
Everatt et al (2016)	Lithuania	General population	21 986	Record linkage / Lithuanian Tuberculosis Registry	Estimates from the general population	Record linkage (66.9% were microscopically confirmed) / Lithuanian Cancer Registry (LCR)	1998-2012	138 811.1 person years; 6.3 years (mean)	Standardization for age and sex

Hong et al (2016)	South Korea	General population, participants of the Korean Cancer Prevention Study (KCPS)	1 607 710	Chest x-ray or past hospitalization for TB / National Health Insurance Service (NHIS)	Participants without TB that participated in the same study	Two or more hospitalizations for lung cancer / NHIS	1997-2000	23 379 734 person-years; 14.5 years (mean)	Adjustment for smoking status (current smokers, exsmokers and never-smokers), amount of cigarettes per day (1-9, 10-19 and >=20), age, sex, socioeconomic status, alcohol consumption, hospitalizations for respiratory diseases
Huang et al (2015)	Taiwan	General population	15 219 024	Record linkage and more than two outpatient visits or one admission for TB / National Health Insurance Research Database (NHIRD)	People without history of TB from the same database	Record linkage with histological confirmation / NHIRD, Taiwan Cancer Registry Database (TCRD)	2001-2003	Follow-up until 2008	Adjustment for age, sex, low income, urbanization, geographical area, asthma, COPD, diabetes, hyperlipidaemia, chronic kidney disease, smoking-related cancers
Jian et al (2016)	Taiwan	Asthma patients	54 520	Record linkage and more than two outpatient visits or one admission for TB / NHIRD	Asthma patients without history of TB	Record linkage with histological confirmation / NHIRD, Taiwan Cancer Registry Database (TCRD)	2001-2005	Follow-up until 2010	Adjustment for age, sex, urbanization, COPD, pneumonia, diabetes, hyperlipidaemia, liver cirrhosis, chronic kidney disease, autoimmune disease, atopy dermatitis, rhinosinusitis, inhaled corticosteroids use, smoking- related cancers
Kuo et al (2013)	Taiwan	General population	6 699	Record linkage including prescription of at least two ant tuberculosis drugs for 2 months / NHIRD	Estimates from the general population	Record linkage – with histological confirmation / NHIRD, Catastrophic Illness Taiwan Database	2000-2010	28 866 person-years; 3.8 years (median)	Standardization for age and sex

Lai et al (2012)	Taiwan	Diabetes Mellitus patients and matched controls (aim of the study was to study diabetes as a risk factor for lung cancer)	98 120	Only record linkage / NHIRD	People without history of TB from the same sample	Only record linkage / NHIRD	1995-2005	442 237 and 108 214 person-years for the DM and non-DM cohort respectively; follow-up until 2008	Adjustment for age, sex, COPD, diabetes mellitus
Littman et al (2004)	USA	Heavy smokers and asbestos- exposed workers that participated in a cancer prevention trial (CARET trial).	17 698	Interview	Subjects without history of TB from the same trial	Review of clinical records and pathology reports from the diagnosing physician or hospital to confirm the tumor origin, location, and histology	1985-1993	9.1 years (median); follow-up until 2002	Adjustment for years smoked and years smoked squared, average number of cigarettes smoked per day and average number of cigarettes smoked per day squared, smoking status (former or current), age, sex, body mass index, trial intervention, asbestosis, asthma, chronic bronchitis or emphysema, pneumonia
Liu et al (2017)	Taiwan	Female COPD patients	13 686	Only record linkage / NHIRD	Female COPD patients without history of TB from the same database	Only record linkage / NHIRD	1997-2011	9.78 years (median); follow-up until 2011	Adjustment for age, income, pneumonia, bronchiectasis, pulmonary fibrosis, hypertension, diabetes mellitus, inhaled corticosteroids use

Oh et al (2020)	South Korea	General population older than 40 years that participated in a nationwide survey (KNHANES study)	20 252	Interview / conducted as part of the survey	People without history of TB from the same survey	Record linkage with pathological confirmation / Korea Central Cancer Registry	2008-2013	3.85 years (mean) for the TB group, 4 years (mean) for the control group; follow- up until 2014	Adjustment for smoking status (current smokers, ex-smokers or never-smokers), age, sex, income level, education, body mass index, physical activity
Shebl et al (2010)	USA	AIDS patients	322 675	History of TB / HIV/AIDS registries	AIDS patients without TB from the same registry	Only record linkage / cancer registries in 11 US regions	1977-2002	1 032 256 person-years; 10 years (not clear if mean or median)	Adjustment for age, sex, race, mode of HIV acquisition, CD4 count at AIDS onset, calendar year of AIDS onset
Shiels et al (2011)	Southwester n regions of Finland	Male smokers, aged 50 to 69 years old, that participated in a cancer prevention trial (ATBC trial)	29 133	Only record linkage / available from the National Hospital Discharge Register	Participants without history of TB from the same trial	Record linkage with histology known for 62% cases / Finnish Cancer Registry	1985-1988	Follow-up until 2005	Adjustment for smoking measured with log cig-years (log [cigarettes smoked per day + 1] x number of years smoked) and age
Simonsen et al (2014)	Denmark	General population	15 024	Record linkage (58% cultured- confirmed) / Danish National Registry of Patients (DNRP)	Estimates from the general population	Record linkage with 89% cases verified morphologically / Danish Cancer Registry, Danish Pathology Register	1978-2011	150 400 person-years; 8.5 years (median)	Standardization for age and sex
Wu et al (2011)	Taiwan	General population	29 641	Record linkage and prescriptions of at least 2 anti- tuberculosis medications for >28 day	Four matched control subjects with no TB record matched to each TB patient from the same database	Record linkage – with histological confirmation / NHIRD, Catastrophic Illness Taiwan Database	1997-2008	5.86 years (mean) for TB patients, 6.22 years (mean) for controls	Adjustment for age, sex, COPD, diabetes mellitus, chronic renal failure, autoimmune disease

Wu et al (2016)	Taiwan	COPD patients	44 065	Record linkage and either 2 outpatients visits or one admission for TB / NHIRD	COPD patients without history of TB from the same database	Record linkage – with histological confirmation / NHIRD, Taiwan Cancer Registry	2001-2005	(4.2 + 17.4) x 10 ⁵ person- months; follow-up until 2010	Adjustment for age, sex, urbanization, number of visits for respiratory diseases within 2 years after index date, pneumonia, chronic kidney disease, diabetes mellitus, hyperlipidaemia, liver cirrhosis, autoimmune disease, atopy dermatitis, rhinosinusitis, inhaled corticosteroids use, oral corticosteroids use, bronchodilators use, statins and aspirin use
Yeo et al (2021)	South Korea	Random sample from the general population that participated in health examinations	1 875 846	Record linkage / Korean National Health Insurance (KNHI) database	People without history of TB from the same sample	Record linkage – with histological confirmation /KNHI database	2009	15 341 796 person years; 8.2 years (mean)	Adjustment for smoking (pack- years), age, sex, BMI, COPD, diabetes mellitus, alcohol consumption, insurance coverage
Yu et al (2011)	Taiwan	General population	716 872	Only record linkage / NHIRD	People without history of TB from the same database	Record linkage / NHIRD	1998-2000	37 951 person-years for the TB group and 6 571 088 person-years for the control group; follow- up until 2007	Adjustment for age, sex, occupation, COPD, diabetes mellitus, hypertension, dyslipidaemia, smoking-related cancers

Study	Study setting (location, country)	Number of participant s	Case description	Control description	Type of controls	Ascertainment of lung cancer	Ascertainment of TB /source	Recruitme nt period	Factors adjusted for
Alavanja et al (1992)	Missouri, USA	2 015	Nonsmoking women from Missouri Cancer Registry	Nonsmoking women randomly sampled from driver's license files and the HCFA	Community controls	76% histologically confirmed, others were cytologically confirmed (percentage no available)	Structured interview	1986-1991	Smoking history (lifetime nonsmoker or former smoker), age
Bodmer et al (2012)	United Kingdom	91 301	Subjects from the General Practice Research Database	Randomly sampled subjects without lung cancer from the General Practice Research Database	Community controls	Record linkage	Record linkage	1995-2009	Smoking status (non-smoker, current, past or unknown), age, sex, COPD, BMI, congestive heart failure, ischemic heart disease, stroke/transient ischemic attack, hypertension, dyslipidaemia, diabetes mellitus
Brenner et al (2001)	Pingliang and Qingyang, China	2 650	Subjects from 2 prefecture hospitals, a company hospital,15 county hospitals and local clinics	Randomly sampled subjects from a population census list	Community controls	60% clinical- radiological diagnosis, 40% pathologically confirmed	Structured interview	1994-1998	Smoking category (heavy, moderate, light o never- smokers), age, sex, prefecture
Brenner et al (2010)	Toronto, Canada	1 393	Subjects from 4 major tertiary care hospitals in metropolitan Toronto	Subjects without any cancer and randomly sampled from property tax assessment files (45%) and the Mount Sinai Hospital Family Medicine Clinic (55%)	Community and hospital controls	100% histology confirmed	Interview	1997-2002	Smoking (pack-years), age, sex, education, ethnicity
Brownson et al (2000)	Missouri, USA	1 376	Women from the Missouri Cancer Registry	Randomly sampled subjects from state driver's license files and from the HCFA	Community controls	74% histologically confirmed, others were cytologically confirmed (percentage no available)	Interview	1993-1994	Smoking (pack-years)
Chan- yeung et al (2003)	Hong Kong, China	661	Subjects from the Queen Mary Hospital	Subjects without lung cancer from the Queen Mary Hospital	Hospital or other health service controls	100% pathologically confirmed	Interview	1999-2001	Smoking duration and amount of cigarettes smoked (<20, 20-39, >40 pack-years), sex
Cheng et al (2012)	Taiwan	1 485	Women from the NHRI	Women from the NHRI hospitalized for orthopedic conditions, trauma, and other health conditions	Hospital or other health service controls	Record linkage	Record linkage	2005-2008	None
Chen et al (2021)	Xinjian, China	16 884	Subjects from a Cancer hospital	Subjects treated for benign tumors	Hospital controls	100% histologically confirmed	Medical records	2016-2018	Age and sex

Galeone et al (2008)	Harbin, China	651	Hospitalized subjects from the department of cardiothoracic surgery of the hospitals	Subjects without lung cancer from the cardiothoracic, urological and general surgery departments of the same hospitals as cases	Hospital or other health service controls	100% histologically confirmed	Structured interview	1987-1990	Smoking status (never, current or exsmokers), smoking duration (for current smokers: <25, 25-35 and >35 years; for exsmokers: <5 and > 5 years from the last cigarette) and amount of smoking (for current cmokers: <10, 10-15 and >=15 cigarettes per day; for exsmokers: <15 and >=15 cigarettes per day), income, family history of lung and other cancers, occupational exposure to lung carcinogens
Hinds et al (1982)	Hawaii, USA	629	Women from Hawaii Tumor Registry	Women from a representative sample of 38 000 adults in Hawaii	Community controls	No information (tumor registry)	Medical records	1968-1978	None
Hosgood III et al (2013)	Xuanwei, China	996	Subjects from 4 hospitals in Xuanwei	Randomly sampled subjects from the general population	Community controls	61% clinical- radiological diagnosis, 39% pathologically confirmed	Interview	1985-1990	Smoking (never users; sole users of other types of tobacco or cigarettes smoked with a water pipe, ≤20 pack-years of cigarettes smoked without a water pipe; >20 pack-years of cigarettes smoked without a water pipe), sex, educational status, passive smoking, fuel type, family history of lung cancer
Ko et al (1997)	Kaohsiung , Taiwan	210	Women from Kaohsiung Medical College Hospital	Women with non- smoking related disease from a health check or ophthalmic department in the Kaohsiung Medical College Hospital	Hospital or other health service controls	100% pathologically confirmed	Structured interview	1992-1993	Socioeconomic status, education residential area, industrial district, cooking fuels, fume extractor, vegetable consumption
Koshiol et al (2010)	Lombardia , Italy	3 883	Subjects from 13 hospitales in Lombardia	Randomly sampled subjects from the Regional Health Service database	Community controls	95% pathologically confirmed, 5% clinical-radiological diagnosis	Structured interview	2002-2005	Smoking (pack-years and average packs/day), age, sex, region
Kreuzer et al (2001)	Germany	857	Men who were never- smokers from 15 study clinics in defined regions of East and West Germany	Men who were never- smokers and randomly sampled from mandatory registries or by a modified random- digit dialing from the same regions as cases	Community controls	100% pathologically confirmed	Structured interview	1990-1996	Age, region
Kreuzer et al (2002)	Germany	762	Women who were never-smokers from	Women who were never-smokers and	Community controls	100% pathologically confirmed	Structured interview	1991-1996	Age, region

			15 study clinics in defined regions of East and West Germany	randomly sampled from mandatory registries or by a modified random- digit dialing from the same regions as cases					
Lai et al (2013)	Taiwan	14 110	Subjects from NHI	Subjects without lung cancer from NIH	Community controls	Record linkage	Record linkage	2000-2009	Smoking (ICD-9 codes, NIH is not reliable for this variable), age, sex, parkinson's disease, COPD, pneumoconiosis, asbestosis, alcoholism
Lai et al (2013)	Taiwan	11 450	Men from NHI	Randomly sampled men from NIH	Community controls	Record linkage	Record linkage	2000-2010	Smoking (ICD-9 codes, NIH is not reliable for this variable, COPD, asbestosis
Lee et al (2001)	Kaohsiung , Taiwan	473	Hospitalized subjects in the chest or oncology from Kaohsiung Medical University Hospital	Hospitalized subjects with conditions unrelated to tobacco use from Kaohsiung Medical University Hospital	Hospital or other health service controls	100% histologically confirmed	Structured interview	1993-1999	Smoking (cumulative pack- years), sex, socioeconomic status, education, residential area
Liang et al (2009)	Shenyang, China	505	Women who were never-smokers from 18 hospitals in Shenyang.	Women who were never-smokers and randomly sampled from the general population using the Residential Registry in Shenyang	Community controls	68% histologically confirmed, others were cytologically confirmed (percentage no available)	Structured interview	2004-2007	Age, passive smoking, years of schooling, marital status ethnicity, 5 years ago BMI, coal use, exposure to coal smoke and cooking fumes
Lim et al (2011)	Singapore	1 808	Women from the five major public sector hospitals in Singapore	Hospitalized women for conditions other than cancer at the same hospital as cases	Hospital or other health service controls	96% pathologically confirmed	Structured interview	1996-1998 and 2005- 2008	Age, passive smoking, number of years in school, family history of cancer, fruit and vegetable consumption, country of origin, dialect group, housing type
Liu et al (1993)	Guangzho u, China	632	Subjects from 8 major hospitals in Guangzhou	Inpatients of the surgery departments at 6 of the same hospitals as cases	Hospital or other health service controls	32% pathologically confirmed	Structured interview	1983-1984	Smoking (not clear how, but they measured cigarettes smoked per day), sex, education, occupation, living area
Lo et al (2013)	Taiwan	3 055	Never-smokers from 6 tertiary medical centres in Taiwan	Never-smokers without lung cancer and randomly selected from the health-examination departments of the same six hospitals as cases	Hospital or other health service controls	100% histologically confirmed	Structured interview	2002-2009	Age, sex, years of education
Luo et al (1996)	Fuzhou, China	408	Subjects from a special reporting system designed to cover all lung cancers in hospitals in urban Fuzhou	Subjects randomly sampled of the general population of urban Fuzhou	Community controls	100% histologically confirmed	Structured interview	1990-1991	None
Mayne et	New York,	868	Nonsmoking subjects	Nonsmoking subjects	Community	99% histologically	Structured	1982-1984	None

al (1999)	USA		from a special system established to rapid ascertainment of lung cancer in New York	randomly sampled from the New York State Department of Motor Vehicles' file of licensed drivers	controls	confirmed	interview		
Osann et al (2000)	California, USA	302	Women with small cell carcinoma from 28 hospitals in Orange County and neighbouring areas	Women identified through a random digit dialling in the same region as cases	Community controls	100% pathologically confirmed	Interview	1990-1993	Smoking (pack-years), years since quitting smoking, age, education
Park et al (2010)	South Korea	2 615	Subjects from 50 Korean general hospitals recruited in the nationwide KATRD study	Subjects from Chungju in the KMCC, a prospective cohort, who were voluntary participants in cancer screening surveys	Hospital or other health service controls	100% histologically confirmed	Interview	1996-2004	Smoking status (ever or never smoker), age, sex
Ramanaku mar et al (2006) – study l	Montreal, Canada	2 746	Subjects from 18 large hospitals in Metropolitan Montreal	Randomly sampled subjects from population based electoral lists in Metropolitan Montreal	Community controls *	100% histologically confirmed	Structured interview	1995-2001	Smoking status (ever or never smoker), log of cigarettes-year, number of years since quitting smoking (0-2, 2-5, 5-10, 10-15 or >15 years), age, family income, year of schooling, ethnicity, type of respondent
Ramanaku mar et al (2006) – study II	Montreal, Canada	1 287	Men from 18 large hospitals in Metropolitan Montreal	Randomly sampled men from population based electoral lists in Metropolitan Montreal	Community controls *	100% histologically confirmed	Structured interview	1979-1986	Smoking status (ever or never smoker), log of cigarettes- year, number of years since quitting smoking (0-2, 2-5, 5-10, 10-15 or >15 years), age, sex, family income, years of school attendance, ethnicity, type of respondent
Raspanti et al (2016)	Chitwan, Nepal	1 212	Subjects from Koirala Memorial Cancer Hospital	Visitors of non-lung cancer patients from Koirala Memorial Cancer Hospital	Hospital or other health service controls	92% histologically confirmed for a group of 209 cases, no data for the other 397 cases	Structured interview	2009-2012	Smoking status (ever or never smoker; they also calculated pack-years of smoking but it is not clear if this was included in the model), age, sex, socioeconomic status, passive smoking, household air pollution exposure
Samet et al (1986)	New Mexico, USA	1 287	Subjects from New Mexico Tumor Registry	Subjects randomly sampled from a list of residential telephone numbers and the New Mexico Medicare Financing Administration	Community controls	No information (tumor registry)	Interview	1980-1982	Smoking (duration of smoking in years, number of cigarettes smoked per day on average, duration of cessation in years, and a product term of smoking duration with an indication variable for age above and age below 65), age, sex, ethnicity

Schwartz et al (1996)	Detroit, USA	534	Subjects who were never-smokers from the OCISS	Subjects without any cancer who were never- smokers and were sampled by random-digit dialling in the OCISS	Community controls	86% histologically confirmed	Interview	1984-1987	Age, gender, race
Seow et al (2002)	Singapore	1 066	Women from 3 major hospitals in Singapore	Women without lung cancer from the same hospitals as cases	Hospital or other health service controls	100% pathologically confirmed	Structured interview	1996-1998	None
Wang et al (1996) a	Guangzho u, China	780	Inpatients from 5 hospitals in Guangzhou	Inpatients without any cancer from the same hospitals as cases	Hospital or other health service controls	100% pathologically confirmed	Interview	1990-1993	Smoking status (no more details), passive smoking, chronic bronchitis/emphysema, family history of tumors, consumption of pickled and cured foods
Wang et al (1996) b	Shenyang, China	270	Women who were never-smokers from 18 hospitals in Shenyang	Women who were never-smokers and randomly sampled from the general population in urban areas of Shenyang	Community controls	57% pathologically confirmed, 43% clinical-radiological diagnosis	Structured interview	1992-1994	None
Wang et al (2009)	Hong Kong, China	504	Women who were never-smokers from the largest oncology centre in Hong Kong	Women who were never-smokers and randomly sampled using the residential telephone in Hong Kong	Community controls	100% pathologically confirmed	Structured interview	2002-2004	Age, employment, total dish year, intake of yellow/orange vegetables, dark green vegetables, multivitamins
Wang et al (2014)	Changchu n, China	1 000	Subjects from a hospital (not specified) in Changchun	Randomly selected subjects with routine physical examinations in the same hospital as cases	Hospital or other health service controls	100% histologically confirmed	Structured interview	2010-2012	Smoking (pack-years), COPD, family history of cancer
Wu et al (1988)	California, USA	672	Women with adenocarcinoma from the Cancer Surveillance Program, a population-based tumour registry, in Los Angeles County	Women selected from each case's neighbourhood in Los Angeles County	Community controls	100% histologically confirmed	Structured interview	1983-1986	Smoking (pack-years), years since smoking stopped, depth of inhalation, social class according to father occupation (blues or white collar worker)
Wu et al (1995)	USA	1 633	Women who were never-smokers from 5 major metropolitan areas in USA	Women who were never-smokers and randomly selected through digit dialing and from the HCFA from the same areas as cases	Community controls	Microscopically confirmed diagnosis	Interview	1985-1990	Age-area-ethnicity-education- passive smoking
Wu- Williams et al (1990)	Harbin and Shenyang, China	1 924	Women from cancer registries of Harbin and Shenyang	Randomly sample women of the general population in the same location as cases	Community controls	42% histologically confirmed, 32% cytology confirmed, 26% clinical-	Structured interview	1985-1987	Smoking (non-smoker, smoked 1-9 cigarettes per day and 1-29 years, 2-19 and 30-39 years, 1- 19 and >40 years, >20

						radiological diagnosis			cigarettes per day and 1-29 years >20 and 30-39 years, >20 and >40 years), age, education, study area
Yang et al (2015)	Guangzho u and Suzhou, China	3 238	Subjects from urban hospitals and one suburb hospital in Guangzhou and Suzhou	Subjects without any cancer from healthy check-up programs in the community health stations in the same city as cases	Hospital or other health service controls	100% histologically confirmed	Structured interview	2007-2010	Smoking status (ever or never smoker), pack-years of smoking (low, 0-5; moderate, 6-20; or high, >20), age, sex, passive smoking, emphysema, education, BMI, educational experience, centre, packs-years occupational exposure to metallic toxicant, housing ventilation, biomass burning, cured meat, vegetables/fruits
Zatloukal et al (2003)	Czech Republic	1 990	Women admitted to Prague University Hospital Na Bulovce	Women who were spouses, relatives, or friends of other patients hospitalized at Prague University Hospital Na Bulovce	Hospital or other health service controls	100% histologically confirmed	Structured interview	1998-2002	Smoking (pack-years), age, education, residence, residence
Zheng et al (1987)	Shanghai, China	2 863	Men from Shanghai Cancer Registry and a specially established lung cancer rapid- reporting system operated by the Shanghai Cancer Institute	Randomly sampled subjects from the general population in Shanghai urban area	Community controls	62% histologically confirmed, 30% cytology confirmed, 7% clinical- radiological diagnosis	Structured interview	1984-1986	Smoking category (non-smoker, light, moderate or heavy smoker), age, sex, education
Zhou et al (2000)	Shenyang, China	144	Women with adenocarcinoma from 18 major hospitals in Shenyang	Randomly selected women from the general population in various areas of Shenyang	Community controls	100% histologically confirmed	Structured interview	1991-1995	None

When the setting is not specified below the country level, the participants were selected nationwide or from a large area of the corresponding country. Non-smokers include never and former smokers. Some studies report a nonsmoking definition that matches corresponding to a never-smokers definition, those studies were considered to only as never-smokers due to uniformity criteria. Pathologically confirmed lung cancer includes histological AND / OR cytological confirmation. HCFA: Health Care Financing Administration. NHRI: National Health Research Institutes from Taiwan. NHI: National Health Insurance from Taiwan. KARTD: Korean academy of tuberculosis and respiratory disease. KMCC: Korean Multi-Center Cancer Cohort. OCISS: Occupational Cancer Incidence Surveillance Study. COPD: chronic obstructive pulmonary disease. BMI: body mass index

Study	Study setting (location, country)	Study population	Number of participants	Ascertainment of TB / source	Comparator group	Ascertainment of lung cancer death / source	Recruitment period	Follow-up duration	Factors adjusted for
Boice et al (1980)	Massachusetts, USA	General population, only females, treated for TB before availability of isoniazid	1090	Medical records / 2 Massachusetts hospitals	Estimates from females in the general population	Death certificates / hospitals	1930-1954	23 094 person- years; 21.2 years (mean); follow-up until 1975	Standardizes for age
Chen et al (1990)	Hebein province, China	Males mine workers with silicosis	5406	Interview	Workers without history of TB from the same mine	Death records / pension department	1970-1982	6102.7 person-years for the TB group and 61633.7 person-years for the non- TB group	None
Christensen et al (2014)	Denmark	General population	25608	Record linkage with 82.6 % microbiological confirmation / Danish Tuberculosis Registry, Danish National Patient Registry (DNPR)	Matched people randomly sampled from the general population	Death certificates / Danish Registry of Causes of Death	1977-2008	TB group: 64 212 person- years; 8.1 years (median) Control group: 234 484 person- years; 10.5 years (median) Total population: 298 696 person-years	Matched on age and sex
Davis et al (1989)	Massachusetts, USA	General population	13 385	Medical records / 12 hospitals	Estimates from the general population	Death certificates / hospitals	1925-1954	25 years (mean); follow-up until 1986	Standardizes for age and sex

Table 3. Characteristic of included cohort studies that report lung cancer mortality as the outcome

Engels et al (2009)	Xuanwei, China	Farmers	42 422	Interview	Farmers without history of TB from the same community	Death records / hospitals, public security bureaus and public health bureaus	1976-1992	Follow-up until 1996	They adjust one variable at a time: smoking per day (cigarettes per day), age, sex, education level, use of smoky coal, asthma, chronic bronchitis, emphysema, family history of tuberculosis, walking hours spent indoors, number of rooms in house)
Floe et al (2018)	Denmark	General population	42 140	Only record linkage / National Patient Registry	Matched controls randomly sampled from the general population	No description	1998-2010	Follow-up until 2010	None
Gao et al (1992)	Shangai, China	General population	30 373	There is only and exposed group	Estimates from the general population	No description	1972-1986	Follow-up until 1986	Standardizes for age and sex
Hong et al (2016)	South Korea	General population, participants of the Korean Cancer Prevention Study (KCPS)	1 607 710	Chest x-ray or past hospitalization for TB / National Health Insurance Service (NHIS)	Participants without TB that participated in the same study	Death certificates / National Statistical Office in Korea	1997-2000	23 379 734 person- years; 14.5 years (mean)	Adjusts for smoking status (current smokers, exsmokers and never-smokers), amount of cigarettes per day (1-9, 10-19 and >=20), age, sex, alcohol consumption- socioeconomic status-diabetes mellitus and respiratory diseases hospitalizations
Leung et al (2013)	Hong Kong, China	Clients enrolled at the 18 health centers for the elderly	61 239	Medical records (49.2% bacteriologically confirmed – 50.8% clinical, radiological and/or histological plus appropriate response to anti-TB	Elderly without history of TB from the same centers	Death registry / statistical section of the Department of Health	2000-2011	490 258 person-years	Adjusts for smoking status, age, sex, passive smoking, language, education level, marital status, housing situation, public means, tested financial assistance status, alcohol use, body mass index, COPD, asthma and

				treatment) / territory-wide TB notification registry					family history of malignancy
Merlo et al (1995)	Genoa, Italy	People with silicosis	515	No description	People with silicosis without history of TB	No description	1961-1980	11.56 years (mean); follow-up until 1981	None
Ng et al (1990)	Hong Kong, China	Men with silicosis	1 419	Interview	Those without history of TB from the same sample	Death records / Registry of Persons, Registry of Deaths	1980	7 429.8 person- years; follow-up until 1986	None
Sasaki et al (1992)	Nagoya, Japan	General population	3 580	Medical records / Nagoya TB Registry	Estimates from the general population	Death certificates and/or medical records	1979-1981	12 702 person- years; follow-up until 1983	Standardizes for age and sex

Study	Study setting (location, country)	Number of participant s	Case description	Control description	Type of controls	Ascertainment of lung cancer mortality	Ascertainment of TB /source	Recruitmen t period	Factors adjusted for
Fu et al (1984)	Harbin, China	1 046	Lung cancer deaths from medical certificates, held by the police substation in each of 3 districts in Harbin, and data from death reports held by each district's Sanitation and Antiepidemic Station	Non-respiratory deaths in the same district of residence held by the same source as cases	Community controls	Death certificates	Interview with relatives of the dead	1977-1979	None

Appendix 8. Assessment of Risk of Bias in included studies

		Sele	ection		Comparability		Outcome		
	Representativen ess of the exposed cohort (maximum 1 star)	Selection of the non- exposed cohort (maximum 1 star)	Ascertainment of exposure (maximum 2 stars)	Dealing with reverse causation bias (maximum 1 star)	Comparability of the cohorts on the basis of the design or analysis (maximum 2 stars)	Assessment of outcome (maximum 1 star)	Was follow-up long enough for outcomes to occur (maximum 1 star)	Adequacy of follow-up (maximum 1 star)	Overall risk of bias
An et al (2020)	1 star	1 star	1 star	1 star	2 stars	none	1 star	1 star	LOW
Bae et al (2013)	1 star	1 star	none	none	1 star	none	1 star	1 star	MODERAT E
Engels et al (2009)	1 star	1 star	none	1 star	none	none	1 star	none	HIGH
Everatt et al (2016)	1 star	1 star	2 stars	1 star	2 stars	none	1 star	1 star	LOW
Hong et al (2016)	1 star	1 star	1 star	none	2 stars	none	1 star	1 star	MODERAT E
Huang et al (2015)	1 star	1 star	1 star	none	1 star	1 star	1 star	1 star	MODERAT E
Jian et al (2016)	none	1 star	1 star	none	1 star	1 star	1 star	1 star	MODERAT E
Kuo et al (2013)	1 star	1 star	1 star	1 star	1 star	1 star	1 star	1 star	LOW
Lai et al (2012)	none	1 star	1 star	none	1 star	none	1 star	1 star	MODERAT E
Littman et al (2004)	none	1 star	none	none	2 stars	1 star	1 star	1 star	HIGH
Liu et al (2017)	none	1 star	1 star	none	1 star	none	1 star	1 star	MODERAT E
Oh et al (2020)	1 star	1 star	none	none	2 stars	1 star	none	1 star	MODERAT E
Shebl et al (2010)	none	1 star	1 star	1 star	1 star	none	1 star	1 star	MODERAT E
Shiels et al (2011)	1 star	1 star	1 star	1 star	2 stars	none	1 star	1 star	LOW
Simonsen et al (2014)	1 star	1 star	1 star	1 star	1 star	1 star	1 star	1 star	LOW
Wu et al (2011)	1 star	1 star	1 star	1 star	1 star	1 star	1 star	1 star	LOW

Wu et al (2016)	none	1 star	1 star	none	1 star	1 star	1 star	1 star	MODERAT E
Yeo et al (2021)	1 star	1 star	1 star	1 star	2 stars	1 star	1 star	1 star	LOW
Yu et al (2011)	1 star	1 star	1 star	none	1 star	none	1 star	1 star	MODERAT E

Table 1. Risk of bias in included cohort studies for the lung cancer diagnosis outcome

		Select	ion		Comparability		Exposure		
	Is the case definition adequate? (maximum 1 star)	Representativenes s of the cases (maximum 1 star)	Selection of controls (maximum 1 star)	Definition of controls (maximum 1 star)	Comparability of cases and controls on the basis of the design or analysis (maximum 2 stars)	Assessment of exposure (maximum 2 stars)	Same method of ascertainment for cases and controls (maximum 1 star)	Non-response rate (maximum 1 star)	Overall risk of bias
Alavanja et al (1992)	1 star	1 star	1 star	1 star	2 stars	none	1 star	none	HIGH
Bodmer et al (2012)	none	1 star	1 star	1 star	2 stars	1 star	1 star	1 star	LOW
Brenner et al (2001)	none	1 star	1 star	none	2 stars	none	1 star	1 star	MODERAT E
Brenner et al (2010)	1 star	none	none	1 star	2 stars	none	1 star	none	HIGH
Brownson et al (2000)	1 star	1 star	1 star	1 star	1 star	none	1 star	1 star	MODERAT E
Chan-yeung et al (2003)	1 star	none	none	1 star	1 star	none	1 star	none	HIGH
Cheng et al (2012)	none	1 star	none	1 star	none	1 star	1 star	1 star	HIGH
Galeone et al (2008)	1 star	none	none	none	1 star	none	1 star	none	HIGH
Chen et al (2021)	1 star	1 star	none	1 star	1 star	1 star	1 star	1 star	LOW
Hinds et al (1982)	1 star	1 star	1 star	1 star	1 star	1 star	1 star	1 star	LOW
Hosgood III et al (2013)	none	1 star	1 star	none	1 star	none	1 star	1 star	MODERAT E
Ko et al (1997)	1 star	1 star	none	1 star	1 star	1 star	1 star	1 star	LOW
Koshiol et al (2010)	1 star	1 star	1 star	none	2 stars	1 star	1 star	1 star	LOW
Kreuzer et al (2001)	1 star	none	1 star	none	2 stars	none	1 star	1 star	MODERAT E
Kreuzer et al (2002)	1 star	none	1 star	none	2 stars	none	1 star	1 star	MODERAT E
Lai et al (2013)	none	none	1 star	1 star	1 star	1 star	1 star	1 star	MODERAT E
Lai et al (2013)	none	none	1 star	1 star	none	1 star	1 star	1 star	HIGH
Lee et al (2001)	1 star	1 star	none	1 star	1 star	none	1 star	1 star	MODERAT E
Liang et al (2009)	none	1 star	1 star	none	2 stars	none	1 star	1 star	MODERAT E
Lim et al (2011)	1 star	1 star	none	1 star	2 stars	none	1 star	1 star	MODERAT

Table 2. Risk of bias in included case-control studies for the lung cancer diagnosis outcome

									E
Liu et al (1993)	none	1 star	none	none	1 star	none	1 star	1 star	HIGH
Lo et al (2013)	1 star	1 star	none	1 star	2 stars	none	1 star	1 star	MODERAT E
Luo et al (1996)	1 star	1 star	1 star	1 star	none	none	1 star	none	HIGH
Mayne et al (1999)	1 star	none	1 star	none	none	none	1 star	none	HIGH
Osann et al (200)	1 star	none	1 star	none	2 stars	none	1 star	none	HIGH
Park et al (2010)	1 star	none	none	1 star	2 stars	none	none	1 star	HIGH
Ramanakumar et al (2006) – study l	1 star	1 star	1 star	none	2 stars	none	1 star	none	HIGH
Ramanakumar et al (2006) – study ll	1 star	1 star	1 star	none	2 stars	none	1 star	none	HIGH
Raspanti et al (2016)	1 star	1 star	none	none	2 stars	none	1 star	none	HIGH
Samet et al (1986)	none	1 star	1 star	1 star	2 stars	none	1 star	1 star	MODERAT E
Schwartz et al (1996)	1 star	1 star	1 star	1 star	2 stars	none	1 star	none	HIGH
Seow et al (2002)	1 star	1 star	none	1 star	1 star	none	1 star	1 star	MODERAT E
Wang et al (1996) a	1 star	none	none	1 star	1 star	none	1 star	none	HIGH
Wang et al (1996) b	none	1 star	1 star	none	1 star	none	1 star	none	HIGH
Wang et al (2009)	1 star	1 star	1 star	1 star	2 stars	none	1 star	none	HIGH
Wang et al (2014)	1 star	none	none	1 star	1 star	none	1 star	none	HIGH
Wu et al (1988)	1 star	none	1 star	none	1 star	none	1 star	none	HIGH
Wu et al (1995)	1 star	1 star	1 star	none	2 stars	none	1 star	none	HIGH
Wu-Williams et al (1990)	none	1 star	1 star	1 star	2 stars	none	1 star	none	HIGH
Yang et al (2015)	1 star	1 star	none	1 star	2 stars	none	1 star	1 star	MODERAT E
Zatloukal et al (2003)	1 star	1 star	none	none	2 stars	none	1 star	1 star	MODERAT E
Zheng et al (1987)	1 star	1 star	1 star	1 star	2 stars	none	1 star	1 star	MODERAT E
Zhou et al (2000)	1 star	none	1 star	none	none	none	1 star	none	HIGH

Table 3. Risk of bias in included cohort studies for the lu	ng cancer mortality outcome
---	-----------------------------

		Sele	ection		Comparability				
	Representativen ess of the exposed cohort (maximum 1 star)	Selection of the non- exposed cohort (maximum 1 star)	Ascertainment of exposure (maximum 2 stars)	Dealing with reverse causation bias (maximum 1 star)	Comparability of the cohorts on the basis of the design or analysis (maximum 2 stars)	Assessment of outcome (maximum 1 star)	Was follow-up long enough for outcomes to occur (maximum 1 star)	Adequacy of follow-up (maximum 1 star)	Overall risk of bias
Deice et al (1080)	1.0101	1 otor	1 stor		1 stor	1 stor	1 stor	1 otor	MODERAT
Chen et al (1900)	i Sidi	1 star	none	none	none	1 star	1 star	none	HIGH
Christensen et al (2014)	1 star	1 star	2 stars	none	none	1 star	1 star	1 star	HIGH
Davis et al (1989)	1 star	1 star	1 star	1 star	1 star	1 star	1 star	1 star	LOW
Engels et al (2009)	1 star	1 star	none	1 star	none	1 star	1 star	none	HIGH
Floe et al (2018)	1 star	1 star	1 star	none	none	none	1 star	1 star	HIGH
Gao et al (1992)	1 star	1 star	1 star	1 star	1 star	none	1 star	none	HIGH
Hong et al (2016)	1 star	1 star	1 star	1 star	2 stars	1 star	1 star	none	LOW
Leung et al (2013)	1 star	1 star	2 stars	1 star	2 stars	1 star	1 star	1 star	LOW
Merlo et al (1995)	none	1 star	none	none	none	none	1 star	none	HIGH
Ng et al (1990)	none	1 star	none	none	none	1 star	none	1 star	HIGH
Sasaki et al (1992)	1 star	1 star	1 star	1 star	1 star	1 star	none	1 star	LOW

Table 4. Risk of bias in included case-control studies for the lung cancer mortality of	utcome
---	--------

		Selectio	n		Comparability		Outcome		
Study	Case definition (maximum 1 star)	Representativeness of the cases (maximum 1 star)	Selection of controls (maximum 1 stars)	Definition of controls (maximum 1 star)	Comparability of cases and controls on the basis of the design or analysis (maximum 2 stars)	Ascertainment of exposure (maximum 2 stars)	Same method of ascertainme nt for cases and controls (maximum 1 star)	Non-response rate (maximum 1 star)	Overall risk of bias
Fu et al (1984)	1 star	none	1 star	none	none	none	1 star	none	HIGH

Appendix 9. Results of individual studies Table 1. Effect size estimates of lung cancer diagnosis risk among persons with a previous episode of TB in cohort studies

Study	Unadjusted	Inadjusted Unadjusted Lower effect effect Cl		r Upper			Adjusted	Adjusted	Lower	Upper	Factors adjusted for		
Olddy	measure	estimate	CI	CI	А	В	с	D	measure	estimate	CI	CI	
An et al (2020)	HR	4.1	3.09	5.45	86	3690	108	18772	HR	4.18	3.15	5.56	Smoking status (ever smoker, ex-smoker or current smoker), age, sex, household income
Bae et al (2013)	RR	2.01	1.09	3.47	16	77	642	6274	RR	1.85	1.08	3.19	Age, intake of tomatoes, coffee
Engels et al (2009)	HR†	5.86	3.03	11.37	-	-	-	-	-	-	-	-	-
Everatt et al (2016)	-	not applicable §	-	-	477	21509	-	-	SIR	3.83	3.49	4.19	Standardization based on age and sex
Hong et al (2016)	RR‡	2.70	2.56	2.84	1573	77725	11246	1517166	HR¶	1.38	1.31	1.46	Smoking status (current smokers, ex-smokers and never-smokers), amount of cigarettes per day (1-9, 10-19 and >=20), age, sex, socioeconomic status, alcohol consumption, diabetes mellitus, respiratory diseases hospitalizations
Huang et al (2015)	RR‡	4.49	4.23	4.78	1052	110469	31707	15075796	HR¶	1.62	1.12	2.35	Age, sex, asthma, chronic obstructive pulmonary disease, low income, urbanization, geographical area, diabetes, hyperlipidaemia, chronic kidney disease, smoking related cancers
Jian et al (2016)	-	-	-	-	-	-	-	-	HR	1.08	0.57	2.03	Age, sex, urbanization, inhaled corticosteroids use, medication, chronic obstructive pulmonary disease, smoking related cancers, diabetes, hyperlipidaemia, liver cirrhosis, chronic kidney disease, autoimmune disease, atopy dermatitis, rhinosinusitis, pneumonia
Kuo et al (2013)	-	not applicable §	-	-	159	6540	-	-	SIR	4.09	3.48	4.78	Standardization based on age and sex
Lai et al (2012)	HR	2.96	2.17	4.03	-	-	-	-	HR	1.60	1.16	2.20	Age, sex, diabetes mellitus, chronic obstructive pulmonary disease
Littman et al (2004)	-	-	-	-	-	-	-	-	HR	1.00	0.65	1.54	Years smoked and years smoked squared, average number of cigarettes smoked per day and average number of cigarettes smoked per day squared, smoking status (former or current), age, sex, body mass index, study arm, asbestosis, asthma, chronic bronchitis or emphysema, pneumonia
Liu et al (2017)	HR	2.87	2.15	3.83	57	926	248	12455	HR	2.65	1.95	3.59	Age, income, pneumonia, bronchiectasis, pulmonary fibrosis, hypertension, diabetes, inhaled corticosteroids use
Oh et al (2020)	HR	2.84	1.41	5.71	-	-	-	-	HR	1.71	0.86	3.39	Smoking status (current smokers, ex- smokers or never-smokers), age, sex, education, income level, body mass index, moderate or vigorous

													physical activity
Shebl et al (2010)	-	-	-	-	-	-	-	-	HR	1.11	0.81	1.51	Age, sex, race, mode of HIV acquisition, CD4 count at AIDS onset, calendar year of AIDS onset
Shiels et al (2011)	RR	1.52‡	1.16	2.00	44	229	3058	25802	HR	1.97	1.5	2.65	Smoking measured with log cig-years (log [cigarettes smoked per day + 1] x number of years smoked), age
Simonsen et al (2014)	-	not applicable §	-	-	429	14595	-	-	SIR	3.40	3.09	3.74	Standardization based on age and sex
Wu et al (2011)	RR	1.64‡	1.26	2.14	74	5583	191	23793	HR	1.64	1.24	2.15	Age, gender, chronic obstructive pulmonary disease, diabetes, chronic renal failure, autoimmune disease
Wu et al (2016)	-	-	-	-	-	-	-	-	HR	1.42	0.89	2.26	Age, sex, pneumonia, urbanization, inhaled corticosteroids, oral corticosteroids, long-acting agonists, short-acting beta agonists, theophylline, statins, aspirin, chronic kidney disease, diabetes, hyperlipidaemia, liver cirrhosis, smoking-related cancers, autoimmune disease, atopy dermatitis, rhinosinusitis, number of visits for respiratory diseases within 2 years after index data
Yeo et al (2021)	HR	2.57	2.35	2.81	485	22083	16262	1837016	HR	1.34	1.22	1.47	Smoking (pack-years), age, sex, BMI, COPD, diabetes mellitus, alcohol consumption, insurance coverage
Yu et al (2011)	HR	11.9	9.73	14.6	100	4380	1584	710808	HR	3.32	2.7	4.09	Age, sex, occupation, diabetes, hypertension, dyslipidaemia, chronic obstructive pulmonary disease, smoking related cancers

*A: number of exposed with outcome, B: exposed without outcome, C: unexposed with outcome, D: unexposed without outcome reported in the paper. † Unadjusted effect estimate and confidence intervals calculated from unadjusted effect estimates reported separately for lung cancer diagnosis 0-4.9 and >5 years after tuberculosis diagnosis. ‡ Unadjusted effect estimate and confidence intervals calculated from the 2 x 2 table. § The study reports SIR using lung cancer incidence in the general population. ¶Adjusted effect estimate and confidence intervals calculated from adjusted effect estimates reported separately for males and females.

Study	Study effect CI		Upper		2 x 2	2 table*	[Adjusted effect	Adjusted effect	Lower	Upper	Set of factors adjusted for	
,	measure	estimate	CI	CI	А	В	С	D	measure	estimate	CI	CI	
Alavanja et al (1992)	OR	1.82†	0.85	1.12	15	19	600	1381	OR	2.0	1.0	4.1	Smoking history (lifetime nonsmoker or former smoker), age
Bodmer et al (2012)	OR	0.97	0.84	1.12	226	1395	12817	76863	OR	0.9	0.8	1.05	Smoking status (non-smoker, current, past or unknown), age, sex, body mass index, congestive heart failure, ischemic heart disease-stroke/transient ischemic attack, hypertension, dyslipidaemia, diabetes mellitus, chronic obstructive pulmonary disease
Brenner et al (2001)	OR	3.8†	2.7	5.38	103	59	783	1705	OR	3.8	2.7	5.4	Smoking category (heavy, moderate, light o never- smokers), age, sex, prefecture
Brenner et al (2010)	OR	2.58†	0.65	10.73	6	5	439	943	OR	2.6	0.7	9.2	Pack-years of smoking, age, sex, education and ethnicity
Brownson et al (2000)	OR	0.86†	0.33	2.19	10	12	666	688	OR	0.9	0.4	2.2	Pack-years of smoking
Chan-yeung et al (2003)	OR	1.78†	1.05	3.06	45	27	285	304	OR	1.83‡	1.1	3.19	Smoking duration and amount of cigarettes smoked (<20, 20-39, >40 pack-years), sex
Cheng et al (2012)	OR	3.03	1.79	5.13	26	37	271	1151	-	-	-	-	-
Chen et al (2021)	OR	4.34†	3.53	5.33	233	175	3745	12741	OR	1.44	1.06	1.95	Age and sex
Galeone et al (2008)	OR	3.97†	2.05	7.85	30	17	186	418	OR	3.82	1.97	7.41	Smoking status (never, current or ex-smokers), duration of smoking (for current smokers <25, 25-35 and >35 years; for ex-smokers <5 and > 5 years from the last cigarette), amount of smoking (for current smokers: <10, 10-15 and ≥ 15 cigarettes per day; for ex-smokers: <15 and ≥ 15 cigarettes per day), income, family history of lung cancer and other cancers, occupational exposure to lung carcinogens
Hinds et al (1982)	OR	1.6	0.6	4.3	7	9	203	410	-	-	-	-	-
HosgoodIII et al (2013)	OR	12.56†	3.08	110	24	2	474	496	OR	83.70	11.00	634.70	Smoking (never users; sole users of other types of tobacco or cigarettes smoked with a water pipe, ≤20 pack-years of cigarettes smoked without a water pipe; >20 pack-years of cigarettes smoked without a water pipe), passive smoking, sex, fuel type, educational status, family history of lung cancer
Ko et al (1997)	OR	4.54†	1.39	19.2	16	4	89	101	OR	5.9	1.3	25.9	Socioeconomic status, residential area, education, industrial district, cooking fuels, fume extractor, vegetable consumption
Koshiol et al	OR	1.1†	0.75	1.6	60	61	1777	1985	OR	0.96	0.62	1.48	Pack-years and smoking intensity (average packs/day),

Table 2. Effect size estimates of lung cancer diagnosis risk among persons with a previous episode of TB in case-control studies

(2010)													age, gender, region
Kreuzer et al (2001)	OR	1.19†	0.23	3.97	3	35	55	764	OR	1.2	0.04	1.41	Age, area
Kreuzer et al (2002)	OR	1.7†	0.75	3.74	13	18	218	513	OR	1.61	0.77	3.37	Age, region
Lai et al (2013)	OR	3.66	3.23	4.14	516	655	2306	10633	OR	2.96	2.60	3.37	Smoking (ICD-9 codes, the NIH database is not reliable for this variable), age, sex, Parkinson's disease, chronic obstructive pulmonary disease, pneumoconiosis, asbestosis, alcoholism
Lai et al (2013)	OR	3.31	2.73	4.02	193	248			OR	2.42	1.98	2.95	Smoking (ICD-9 codes, the NIH database is not reliable for this variable), chronic obstructive pulmonary disease, asbestosis
Lee et al (2001)	OR	1.4†	0.87	2.25	45	51	146	231	OR	6.88‡	3.03	15.63	Smoking (cumulative pack-years), residential area, education, socioeconomic status, sex
Liang et al (2009)	OR	4.18†	1.43	14.77	16	5	210	274	OR	4.7	1.6	13.2	Age, passive smoking, marital status, years of schooling, ethnicity, 5 year ago body mass index, coal use, exposure to coal smoke and cooking fumes
Lim et al (2011)	OR	1.66†	0.99	2.73	27	53	406	1322	OR	1.58	0.95	2.62	Age, passive smoking, family history of cancer, fruit and vegetable consumption, country of origin, dialect group, housing type, number of years in school
Liu et al (1993)	OR	2.23	1.51	3.31	101	55	215	261	OR	2.10‡	1.2	3.67	Smoking (not clear how, but they measured cigarettes smoked per day), sex, education, occupation, living area
Lo et al (2013)	OR	2.35†	1.58	3.55	88	39	1433	1495	OR	2.48‡	1.45	4.25	Age, sex, years of education
Luo et al (1996)	OR	2.4	1.2	4.7	16	23	86	283	-	-	-	-	-
Mayne et al (1999)	OR	1.20	0.52	2.79	12	10	421	425	-	-	-	-	-
Osann et al (2000)	OR	1.26†	0.19	6.61	3	5	95	199	OR	1.8	0.2	14.4	Pack-years of smoking, years since quitting smoking, age, education
Park et al (2010)	OR	2.96†	2.25	3.93	276	74	1262	1003	OR	2.56‡	1.85	3.56	Smoking status (ever or never smoker), age, sex
Ramanakumar et al (2006) study l	OR	2.93†	1.17	8.75	26	6	749	506	OR	2.7	1.0	7.4	Smoking status (ever or never smoker), log of cigarettes- year, number of years since quitting smoking (0-2, 2-5, 5- 10, 10-15 or >15 years), age, ethnicity, type of respondent (self or surrogate), year of schooling, family income
Ramanakumar et al (2006) study II	OR	1.2†	0.68	2.1	27	29	1178	1512	OR‡	0.90	0.48	1.67	Smoking status (ever or never smoker), log of cigarettes- year, number of years since quitting smoking (0-2, 2-5, 5- 10, 10-15 or >15 years), age, sex, ethnicity, type of respondent (self or surrogate), year of schooling, family income
Raspanti et al (2016)	OR	2.17†	1.46	3.25	88	44	518	562	OR	2.30	1.50	3.51	Smoking status (ever or never smoker; they also calculated pack-years of smoking but it is not clear if this was included in the model), age, sex, household air pollution exposure, socioeconomic status, passive

													smoking
Samet et al (1986)	OR	1.24	0.66	2.29	27	22	491	747	OR	1.40	0.69	2.87	Smoking (duration of smoking in years, number of cigarettes smoked per day on average, duration of cessation in years, and a product term of smoking duration with an indication variable for age above and age below 65), age, sex, ethnicity
Schwartz et al (1996)	OR	2.19	0.58	10.06	8	4	249	273	OR	2.1	0.6	7.1	Age, sex, race
Seow et al (2002)	OR	1.92†	1.10	3.31	27	37	276	726	-	-	-	-	-
Wang et al (1996)	-	-	-	-	-	-	-	-	OR	2.57	1.37	4.80	Smoking status (no more details), chronic bronchitis/emphysema, family history of tumours, passive smoking, consumption of pickled and cured foods
Wang et al (1996_2)	OR	1.39	0.94	3.04	-	-	-	-	-	-	-	-	-
Wang et al (2009)	OR	1.76†	0.61	5.21	10	8	202	284	OR	2.43	0.82	7.20	Age, employment, total dish year, intake of yellow/orange vegetables, dark green vegetables, multivitamins
Wang et al (2014)	OR	2.22†	1.12	4.58	30	14	470	486	-	-	-	-	-
Wu et al (1988)	OR	7.1†	0.91	322.12	7	1	329	335	RR	10.0	1.1	90.1	Pack-years of smoking, years since smoking stopped, depth of inhalation, social class according to father occupation (blues or white-collar worker)
Wu et al (1995)	OR	1.63†	0.87	2.95	19	37	378	1199	OR	1.96	0.9	3.1	Age, passive smoking, area, ethnicity, education
Wu-Williams (1990)	-	-	-	-	103	83	-	-	RR	1.3	0.9	1.7	Age, smoking (non-smoker, smoked 1-9 cigarettes per day and 1-29 years, 2-19 and 30-39 years, 1-19 and >40 years, >20 cigarettes per day and 1-29 years, >20 and 30-39 years, >20 and >40 years), education, study area
Yang et al (2015)	OR	1.74†	1.3	2.34	131	84	1428	1595	OR	1.52	1.13	2.04	Smoking status (ever or never smoker), pack-years of smoking (low, 0-5; moderate, 6-20; or high, >20), age, passive smoking, sex, emphysema, education, body mass index, educational experience, centre, packs-years occupational exposure to metallic toxicant, housing ventilation, biomass burning, cured meat, vegetables/fruits consumption
Zatloukal et al (2003)	OR	0.81	0.47	1.34	20	108	346	1516	OR	1.75‡	1.01	3.05	Smoking (pack-years), age, residence, education, residence
Zheng et al (1987)	OR	1.45†	1.18	1.77	266	213	1105	1279	OR	1.5	1.2	1.8	Smoking category (non-smoker, light, moderate or heavy smoker), age, sex, education
Zhou et al (2000)	OR	1.63	0.63	4.29	15	10	57	62	-	-	-	-	-

*A: number of exposed cases, B: exposed controls, C: unexposed cases, D: unexposed controls reported in the paper. †Unadjusted effect estimate and confidence intervals calculated from the 2 x 2 table. ‡ Adjusted effect estimate and confidence intervals calculated from adjusted effect estimates reported by subgroups (e.g.: males and females or lung cancer subtypes).

Study	Unadjusted effect	Unadjusted	Lower Cl	Upper		2 x :	2 table*		Adjusted	Adjusted	Lower	Upper	Sat of forture adjusted for
Study	measure	estimate	CI	CI	А	В	С	D	measure	estimate	CI	CI	
Boice et al (1980)	-	not applicable ‡	-	-	3	-		-	SMR	1.54§	0.29	3.14	Standardization based on age and sex
Chen et al (1990)	RR	2.72†	1.17	6.33	7	560	22	4817	-	-	-	-	-
Christensen et al (2014)	RR	not applicable			171	6231	278	18928	RR	2.25	1.86	2.72	Age and sex
Davis et al (1989)	-	not applicable ‡	-	-	-	-	-	-	SMR	1.05§	0.71	1.55	Standardization based on age and sex
Engels et al (2009)	HR	6.1	4.3	8.7	31	215	2428	39748	HR	9.70 4.30	4.8 1.8	19 10	Smoking per day (cigarettes per day). Other variables separately adjusted for (results not shown): age, sex, education level, use of smoky coal, asthma, chronic bronchitis, emphysema, family history of tuberculosis, walking hours spent indoors, number of rooms in house
Floe et al (2018)	RR	4.76†	3.81	5.93	165	6536	146	28055	-	-	-	-	-
Gao et al (1992)	-	not applicable ‡	-	-	-	-	-	-	SMR	1.91§	0.98	3.73	Standardization based on age and sex
Hong et al (2016)	RR	3.07†	2.90	3.26	1315	77983	8247	1520165	HR	1.44¶	1.36	1.53	Smoking (current smokers, ex-smokers and never-smokers), amount of cigarettes per day (1-9, 10-19 and >=20), age, sex, alcohol consumption, socioeconomic status, diabetes mellitus, respiratory diseases hospitalizations
Leung et al (2013)	RR	2.61	1.82	3.74	30	486	1314	59409	HR	2.01	1.40	2.90	Smoking status (never-smokers and ever- smokers), age, sex, passive smoking, language, education level, marital status, housing situation, public means, tested financial assistance status, alcohol use, body mass index, chronic obstructive pulmonary disease, asthma, family history of malignancy
Merlo et al (1995)	RR	0.71†	0.32	1.59	7	110	28	305	-	-	-	-	-
Ng et al (1990)	RR	1.64†	0.75	3.59	19	758	9	593	-	-	-	-	
Sasaki et al (1992)	-	not applicable ‡	-	-	-	-	-	-	SMR	4.57§	2.81	7.42	standardization based on age and sex

Table 3. Effect size estimates of lung cancer mortality risk among persons with a previous episode of TB in cohort studies

*A: number of exposed with outcome, B: exposed without outcome, C: unexposed with outcome, D: unexposed without outcome reported in the paper. † Unadjusted effect estimate and confidence intervals calculated from the 2 x 2 table. ‡ The study reports SMR using lung cancer death rates in the general population. § Adjusted SMR and confidence intervals calculated from data reported in the paper. ¶ Adjusted effect estimate and confidence intervals calculated from data reported in the paper. ¶ Adjusted effect estimate and confidence intervals calculated from adjusted effect estimates reported separately for males and females.

Unadj Study eff	Unadjusted effect	Unadjusted	Lower	Lower	Lower	Upper	numerators and denominators *				Adjusted Adjusted	Adjusted	Lower	Upper	Set of factors adjusted for
Study	measure	estimate	CI	CI	A	В	С	D	measure	estimate	CI	CI			
Fu et al (1984)	OR	2.86†	1.87	4.45	89	35	434	488	-	-	-	-	-		

Table 4. Effect size estimates of lung cancer mortality risk among persons with a previous episode of TB in case-control studies

*A: number of exposed cases, B: exposed controls, C: unexposed cases, D: unexposed controls reported in the paper. † Unadjusted OR and confidence intervals calculated from the 2 x 2 table (the study reports an unadjusted RR).

•

Appendix 10. Additional forest plots Figure 1. Forest plot for the association between tuberculosis and subsequent lung cancer diagnosis among cohort studies (model 1)

Study	Hazard Ratio	HR	95%-CI	Weight
An et al (2020)		4.10	[3.09; 5.45]	13.6%
Bae et al (2013)		2.01	[1.13; 3.59]	9.0%
Engels et al (2009)	\rightarrow \rightarrow	5.86	[3.03; 11.35]	7.9%
Hong et al (2016)	+	2.70	[2.56; 2.84]	16.2%
Huang et al (2015)	+	4.49	[4.22; 4.77]	16.1%
Oh et al (2020)		2.84	[1.41; 5.72]	7.4%
Shiels et al (2011)		1.52	[1.16; 2.00]	13.8%
Yeo et al (2021)	-	2.57	[2.35; 2.81]	16.0%
Random effects model	\sim	2.96	[2.28; 3.83]	100.0%
Heterogeneity: $I^2 = 97\%$				
p < 0.0001 0.2	0.5 1 2 5 10			
Decreas	ed risk Increased risk			

Figure 2. Forest plot for the association between tuberculosis and subsequent lung cancer diagnosis among case-control studies (model 1)

Study		Haz	ard Ratio			HR	95	5%-CI	Weight	
Alavanja et al (1992)						1.82	[1.59;	2.09]	3.5%	
Bodmer et al (2012)			ł	_		0.97	[0.84;	1.12]	3.5%	
Brenner et al (2001)			—	•		3.80	[2.69;	5.36]	3.2%	
Brenner et al (2010)			•		<i>→</i>	2.58	[0.64;	10.48]	1.2%	
Brownson et al (2000)	-					0.86	[0.33;	2.22]	1.9%	
Chan-yeung et al (2003)		-	-	_		1.78	[1.04;	3.04]	2.8%	
Chen et al (2021)						4.34	[3.53;	5.33]	3.5%	
Cheng et al (2012)			· ·	_		3.03	[1.79;	5.13]	2.8%	
Galeone et al (2008)			_			3.97	[2.03;	1.11]	2.5%	
Hinds et al (1982)						1.60	[0.60;	4.28]	1.8%	
HosgoodIII et al (2013)				_	<u></u>	12.56	[2.10;	75.06]	0.8%	
Ko et al (1997)		- L			~	4.54	[1.22;	16.87]	1.3%	
Koshioi et al (2010)			-			1.10	[0.75;	1.61	3.2%	
Kreuzer et al (2001)						1.19	[0.29;	4.94]	1.2%	
Kreuzer et al (2002)				-		1.70	[0.76;	3.80]	2.2%	
Lai et al (2013) a						3.00	[3.23,	4.14]	3.0%	
Laret al (2013) b						3.31	[2.73;	4.0ZJ	3.5%	
Lee et al (2001)						1.40	[0.87;	2.25]	2.9%	
Liang et al (2009)					,	4.18	[1.30;	0.761	1.5%	
Limetal (2011)		Γ				1.00	[1.00,	2.70]	2.9%	
Liu et al (1993)						2.23	[1.51;	3.30]	3.1%	
Lo et al (2013)						2.30	[1.57,	3.52]	3.1%	
Mayne et al (1990)						2.40	[1.21,	4.70]	2.470	
Ocean et al (2000)						1.20	[0.52,	Z./0]	2.170	
Disann et al (2000)						1.20	[0.21,	2 0 1 1	0.9%	
Pamanakumar et al (2006) study II						2.90	[2.24,	0.91	3.3% 2.7%	
Ramanakumar et al (2006) study li					_	2.02	[0.00,	2.11]	2.170	
Response et al (2016)						2.93	[1.07,	2 241	2.1%	
Samet et al (1986)						1.24	10.67	3.24J 2.311	2.6%	
Schwartz et al (1996)					_	2 10	10.53	9 121	1.2%	
Seow et al (2002)						1 02	[1 11.	2 221	2.8%	
Wang et al (1996-2)		_				1.32	10 77	2 501	2.0%	
Wang et al (2009)						1.55	10.60	5 141	1.7%	
Wang et al (2014)						2.22	[1 10	4 4 91	2.4%	
Wulet al (1988)					→	7 13	IO 38: 1	34 151	0.4%	
Wu et al (1995)		_				1.63	10.89	3 001	2.6%	
Yang et al (2015)						1 74	[1 30	2 331	3.3%	
Zatloukal et al (2003)			_			0.81	[0 48	1 371	2.8%	
Zheng et al (1987)		_				1 45	[1 18	1 781	3.5%	
Zhou et al (2000)						1.63	10 62	4 251	1.9%	
			_			1.00	[0.02,		1.070	
Random effects model			\diamond			2.00	[1.65;	2.41]	100.0%	
Heterogeneity: I ² = 89%				I			-	-		
p < 0.0001	0.2	0.5 1	2	5	10					
	Decrea	sed risk	Increased	risk						

Figure 3. Forest plot for the association between tuberculosis and subsequent lung cancer mortality among cohort studies (model 1)

Study	Hazard Ratio	HR	95%-CI	Weight
Chen et al (1990)		2.72	[1.17: 6.33]	8.7%
Engels et al (2009)	_+_	6.10	[4.29; 8.68]	16.7%
Floe et al (2018)		4.76	[3.82; 5.94]	18.9%
Hong et al (2016)	H	3.07	[2.90; 3.25]	20.5%
Leung et al (2013)		2.61	[1.82; 3.74]	16.5%
Merlo et al (1995)		0.71	[0.32; 1.58]	9.2%
Ng et al (1990)		1.64	[0.75; 3.59]	9.5%
Random effects model	\diamond	2.97	[2·14; 4·11]	100.0%
Heterogeneity: $I^2 = 87\%$				
p < 0.0001	0.2 0.5 1 2 5 10			
	Decreases risk Increases risk			

Figure 4. Forest plot for the association between tuberculosis and subsequent lung cancer mortality among cohort studies (model 2)

Study	Hazard Ratio				HR	95%-CI	Weight
Hong et al (2016) Leung et al (2013)			+		$\begin{array}{c} 1 \cdot 44 \\ 2 \cdot 01 \end{array}$	[1·36; 1·53] [1·40; 2·89]	65·1% 34·9%
Random effects model Heterogeneity: $I^2 = 68\%$	[]	<	\sim	-	1.62	[1.18; 2.21]	100.0%
p < 0.0001	0·2 0 Decreases	5 1 risk Incre	2 eases risk	5	10		

Appendix 11. Effect estimates by time between tuberculosis diagnosis and lung cancer diagnosis from the three cohort studies reporting by latency strata.

Time since tuberculosis diagnosis (years)
Appendix 12. Pooled adjusted estimates from cohort studies excluding lung cancer cases detected within one or two years of tuberculosis diagnosis

Study	Hazard Ratio	HR	95%-CI	Weight
An et al (2020) Everatt et al (2016) Shiels et al (2011)		1.77 1.23 1.53	[0.70; 4.48] [0.69; 2.20] [1.07; 2.19]	9.8% 25.0% 65.2%
Random effects model Heterogeneity: $l^2 = 0\%$ p < 0.0001 0	.2 0.5 1 2 5 Decreased risk Increased risk	1.47	[1.10; 1.97]	100.0%

All the studies included in this analysis controlled for age and any assessment of smoking (model 2). The HR from Shiels et al (2011) and Everatt et al (2016) was calculated after excluding lung cancer cases detected within the first two years of tuberculosis diagnosis. In the study by An et al (2020), cancer cases within the first year of tuberculosis diagnosis were excluded.

Figure 2. Adjusted estimates from case-control studies that report the association between tuberculosis and lung cancer diagnosis

Appendix 14. GRADE assessment of the evidence

Cohort st	udies								
	Certainty asses	sment					Effect		
Number of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pooled HR [*] (95% CI)	Certainty	Importance
Lung car	ncer diagnosis								
5	Observational	Not serious [†]	Not serious	Not serious	Not serious	None	1.51 (1.30- 1.76)	⊕⊕⊖⊖ Low	Important
Lung car	ncer mortality								
2	Observational	Serious [‡]	Not serious	Not serious	Not serious	None	1.62 (1.18- 2.21)	⊕OOO Very low	Important

HR: Hazard ratio. Here we considered the pooled estimates form the available model with the most rigorous adjustment for smoking. For lung cancer diagnosis, model 3 provides the most accurate pooled estimate (HR adjusted for age and quantitatively assessed smoking=1.51). For lung cancer mortality, model 3 was not performed so the most accurate estimate is provided by model 2 (HR adjusted for age and any assessment of smoking=1.62). ¹Three of the five studies included in this meta-analysis had low risk of bias. Furthermore, stratified analysis to the three cohorts with low risk of bias yielded consistent results (HR=1.72, 95% CI 1.25-2.38). ¹Only two studies included in this meta-analysis and therefore not possible to perform an analysis restricted to studies with low risk of bias.

Case-con	trol studies								
	Certainty asses	sment					Effect		
Number of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Pooled OR [*] (95% CI)	Certainty	Importance
Lung car	cer diagnosis								
19	Observational	Serious [†]	Not serious	Not serious	Not serious	None	1.74 (1.42- 2.13)	⊕○○○ Very low	Important

OR=Odds ratio. ⁺Here we considered the pooled estimates form the available model with the most rigorous adjustment for smoking (model 3, table 2 in the main manuscript). [†]Only one out of the 19 case-control studies in model 3 had low risk of bias. Ten and eight had moderate and high risk of bias, respectively.

*Everatt et al (2016) reports an adjusted estimate for "non-smokers" equivalent to "never-smokers" definition. † Bae et al

Adjustment for	Lung cancer diagnosis		Lung cancer mortality
	Cohort studies	Case-control	Cohort studies
	(n=19)	studies (n=43)	(n=12)
Smoking	7*	32¶	3
Age	18	25	7
Sex	18†	32#	9**
Any socioeconomic status indicator (income, education	6	18	2
Ethnicity	1	4	0
Location (urbanization, area, residence or prefecture)	3	10	0
Passive smoking	0	6	1
Comorbidities			
Any comorbidity	10	6	4
COPD	8±	4	1
Diabetes	7	1	1
Pneumonia	4	0	0
Dyslipidaemia	4	1	0
Chronic kidney disease/failure	4	4	0
Asthma	3§	0	1
Smoking-related cancers	3	0	0
Autoimmune disease	3	0	0
Hypertension	2	1	0
Liver cirrhosis	2	0	0
Atopy dermatitis	2	0	0
Rhinosinusitis	2	0	0
Chronic bronchitis/emphysema	1	3	0
Bronchiectasis	1	0	0
Pulmonary fibrosis	1	0	0
Asbestosis	1	2	0
Silicosis	0	0	2††
Pneumoconiosis	0	1	0
AIDS	1	0	0
Congestive heart failure	0	1	0
Ischemic heart disease	0	1	0
Stroke/transient ischemic attack	0	1	0
Inhaled corticosteroids use	3	0	0
Oral corticosteroids use	1	0	0
Body mass index	3	3	1
Physical activity	1	0	0
Alcohol	2	1	1
Hospitalizations for respiratory diseases	1	0	1
Any adjustment for diet	1	5	0
Family history of lung cancer	0	4	1

(2013), Liu et al (2017), and Shiels et al (2011) restricted intake to one sex (females or males). Huang et al (2015) reported adjusted estimates stratified by sex. ‡ Liu et al (2017) and Wu et al (2016) restricted intake to COPD patients. § Jian et al (2016) restricted intake to asthma patients. ¶ Kreuzer et al (2001), Kreuzer et al (2002), Liang et al (2009), Lo et al (2013), Schwartz et al (1996), Wang et al (1996) b, Wang et al (2009), and Wu et al (1995) restricted intake to never-smokers. # Alavanja et al (1992), Brownson et al (2000), Cheng et al (2012), Hinds et al (1982), Ko et al (1997), Kreuzer et al (2001), Kreuzer et al (2002), Liang et al (2013), Liang et al (2009), Lim et al (2011), Osann et al (2000), Ramanakumar et al (2006) – study I, Seow et al (2002), Wang et al (1996) b, Wang et al (2009), Wu et al (1988), Wu et al (1995), Wu-Williams et al (1990), Zatloukal et al (2003), and Zhou et al (2000) restricted intake to one sex (females or males). Chan-Yeung et al (2003), Lee et al (2001), Liu et al (1993), Lo et al (2013), Park et al (2010), Ramanakumar et al (2006) – study II reported results stratified by sex. ** Boice et al (1980), Chen et al (1990), and Ng et al (1990) restricted intake to one sex (females or males). ††Merlo et al (1995) and Ng et al (1990) restricted to patients with silicosis.

Appendix 16. Amendments to the protocol

The study was prospectively registered in PROSPERO. A first version of the protocol was published in PROSPERO on 05/07/2020. The start of the review was delayed due to the COVID-19 outbreak in Peru, and the authors uploaded a new version of the protocol before starting the data extraction. We added a secondary outcome (lung cancer mortality), further databases to search (Scopus, conference abstracts) to make the review more comprehensive, and pre-specified the subgroup analysis (available online on 26/02/2021). No more versions of the protocol were published.

Some details of the analysis could not possibly be pre-specified in the protocols. We had to define the core set of factors for the meta-analysis of adjusted effect estimates after ascertaining, during data extraction, adjustment approaches used in the studies. We then also established the different methods studies used to control for smoking and decided to develop two models to pool adjusted estimates. Importantly, we defined these details before starting the statistical analysis. Apart from that, all further not pre-specified analyses are labelled as such in the manuscript.

Appendix 17. L	ist of	excluded	studies	with	reasons	

Study ID	Reason for exclusion and study reference
Abou et al (2017)	Wrong study design: Systematic Review Abou Chakra C, Cheng M, Cnossen S, et al. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis 2017; 64: 635–44.
Aerts et al (2012)	Wrong study design Aerts J, Bakker M, Hegmans, et al. History of tuberculosis as an independent prognostic factor for lung cancersurvival. Lung Cancer 2012; 76: 452–6.
Ahmed et al (2014)	Exposure of active TB cannot be determined Ahmed F, Al Emran A, Bin Imran I, et al. Score based risk assessment of lung cancer and its evaluation for Bangladeshipeople. Asian Pac J Cancer Prev 2014; 15: 7021–7.
Ahrens et al (2014)	This article was a pooled analysis of case-control studies Ahrens W, Behrens T, Bencko V, Boffetta P, DR B, Bruning T, et al. Is previous respiratory disease a risk factor for lung cancer? Am J Respir Crit Care Med [Internet]. 2014;190(5 PG-549–59):549–59.
An et al (2020)	Wrong study design: Genetic study An S, Ashikawa K, Bassig B, et al. Tuberculosis infection and lung adenocarcinoma: Mendelian randomization andpathway analysis of genome-wide association study data from never-smoking Asianwomen. Genomics 2020; 112: 1223–32.
Andrew et al (2012)	This article was a pooled analysis of observational studies Andrew A, Bencko V, Bickeboller H, et al. Previous lung diseases and lung cancer risk: a pooled analysis from theInternational Lung Cancer Consortium. Am J Epidemiol 2012; 176: 573–85.
Ariannia et al (2020)	Wrong study design Ariannia A, Ashaari M, Fazel A, Ferlay J, Ghasemi-Kebria F, Ghayoriardahaei H, et al. Increasing trends of lung cancer in Golestan province, Northern Iran (2004-2016). Cancer Epidemiol [Internet]. 2020;65(PG- 101687):101687.
Au et al (2012)	Exposure of interest was asbestosis and previous history of TB Au R, Chen M, Tse L, Wang F, XR W, IT Y. Pulmonary tuberculosis and lung cancer mortality in a historical cohort ofworkers with asbestosis. Public Health 2012; 126: 1013–6.
Ba et al (2019)	No control group Ba O, Baddredine H, Cisse M, et al. [Epidemiology of primary lung cancer among non-smokers in Senegal]. Rev Mal Respir 2019; 36: 15–21.
Boffetta et al (2012)	Wrong study design: Review Boffetta P, Sisti J. What proportion of lung cancer in never-smokers can be attributed to known riskfactors? Int J Cancer [Internet]. 2012;131(2 PG-265–75):265–75.
Boice et al (2019)	Exposure of active TB cannot be determined Boice Jr J, Cohen S, Ellis E, Golden A, Mumma M, Zablotska L. Sex-specific lung cancer risk among radiation workers in the million-person studyand patients TB-Fluoroscopy. Int J Radiat Biol 2019; : 1–12.
Brenner et al (2011)	Wrong study design: Systematic Review Brenner D, Hung R, McLaughlin J. Previous lung diseases and lung cancer risk: a systematic review andmeta-analysis. PLoS One 2011; 6: e17479.
Caporaso et al (2006)	Exposure of active TB cannot be determined Caporaso N, Consonni D, Gao Y, et al. Family history of cancer and nonmalignant lung diseases as risk factors for lung cancer. Int J Cancer 2009; 125: 146–52.
Cha et al (2009)	Wrong study design Cha S, Jung T, Kim C, et al. The clinical course of respiratory tuberculosis in lung cancer patients. Int J Tuberc Lung Dis 2009; 13: 1002–7.
Chang et al (2009)	Exposure of active TB cannot be determined Chang YL, Chul MA, Jeong HJ, Hyung JK, Se KK, Chang J, et al. Association of insulin receptor substrate-1 G972R variant with non-small cell lung cancer risk. Tuberc Respir Dis [Internet]. 2009;67(1 PG-8–13):8–13.
Chen et al (2007)	Exposure of active TB cannot be determined Chen W, Yang J, Chen J, Bruch J. Exposures to silica mixed dust and cohort mortality study in tin mines: Exposure-response analysis and risk assessment of lung cancer. Am J Ind Med [Internet]. 2006;49(2 PG- 67–76):67–76.
Chia et al (2014)	Wrong study design Chia K, Lim W, Loy E, Omkar Prasad R, Seow A, Tan C. Lung cancer incidence in Singapore: ethnic and gender differences. Lung Cancer 2014; 84: 23–30.
Chou et al (2011)	Duplicate article Chou Y, Hu H, Huang N, et al. Pulmonary tuberculosis increases the risk of lung cancer: a population- basedcohort study. Cancer 2011; 117: 618–24.
Christopoulos et al (2014)	Wrong study design: Systematic Review Christopoulos A, Saif M, Sarris E, Syrigos K. Epidemiology of active tuberculosis in lung cancer patients: a systematic review. Clin Respir J 2014; 8: 375–81.
Colletti et al (2015)	No control group Colletti P, Fellner F, Gabriel M, et al. Malignant disease as an incidental finding at (1)(8)F-FDG-PET/CT scanning inpatients with granulomatous lung disease. Nucl Med Commun 2015; 36: 430–7.
Cukic et al (2017)	No control group Cukic V. The Association Between Lung Carcinoma and Tuberculosis. Med Arch [Internet]. 2017;71(3 PG- 212–214):212–4.
Dong et al (2009)	Exposure of active TB cannot be determined Dong D, Hu P, Sun Y, Xu G. Lung cancer among workers exposed to silica dust in Chinese refractory plants. Scand J Work Env Heal [Internet]. 1995;21 Suppl 2(PG-69-72):69–72.
Esfahani et al (2018)	Wrong type of publication: Letter to the editor Esfahani B, Keikha M. The Relationship between Tuberculosis and Lung Cancer. Adv Biomed Res 2018; 7: 58.

Figueroa et al (2018)	Exposure of active TB cannot be determined Figueroa CGS, Plata RF, Briseño DM, de la Garza SR, Pizano AM, Marina FF, et al. Analysis of a routine database to identify risk factors of the host and the environment associated with respiratory diseases . Rev Inst Nac Enferm Respir [Internet]. 2012;71(1 PG-11–20):11–20.
Fol et al (2021)	Wrong study design: Review Fol M, Koziński P, Kulesza J, Białecki P, Druszczyńska M. Dual Nature of Relationship between Mycobacteria and Cancer. Int J Mol Sci [Internet]. 2021;22(15 PG-).
Fukami et al (2020)	Wrong study design Fukami T, Hebisawa A, Takahashi F, Tamura A. Recent trends in the incidence of latent tuberculosis infection in Japanesepatients with lung cancer: A small retrospective study. J Infect Chemother [Internet]. 2020;26(3 PG-315–317):315–7.
Furlow et al (2018)	Wrong type of publication: Brief discussion Furlow B. Tobacco control, lung cancer, and tuberculosis in Singapore. Lancet Respir Med [Internet]. 2018;6(10 PG-741–742):741–2.
Golsha et al (2009)	No control group Golsha R, Rezaei SR, Shafiee A, Najafi L, Dashti M, Roshandel G. Pulmonary tuberculosis and some underlying conditions in Golestan Province of Iran, during 2001-2005. J Clin Diagn Res [Internet]. 2009;3(1 PG-1302–1306):1302–6.
Goo et al (2006)	Exposure of active TB cannot be determined Goo J, Kim H, Kim H, Kim Y. Lung Cancer CT Screening and Lung-RADS in a Tuberculosis-endemic Country: TheKorean Lung Cancer Screening Project (K-LUCAS). Radiology 2020; : 192283.
Guan et al (2009)	Wrong study design: Systematic Review Guan P, He Q, Li X, et al. Facts and fiction of the relationship between preexisting tuberculosis and lungcancer risk: a systematic review. Int J Cancer 2009; 125: 2936–44.
Han et al (2018)	Wrong study design Han K, Hong S, Kim S, et al. Effect of pre existing respiratory conditions on survival of lung cancerpatients: A nationwide population-based cohort study. Asia Pac J Clin Oncol 2018; 14: e71–80.
Ho et al (2014)	Duplicate article Ho C, Huang J, Jan S, et al. The coexistence of common pulmonary diseases on the histologic type of lungcancer in both genders in Taiwan: a STROBE-compliant article. Med 2014; 93: e127.
Ho et al (2015)	Wrong study design Ho C, Huang J, Jan S, et al. Impact of coexisting pulmonary diseases on survival of patients with lungadenocarcinoma: a STROBE-compliant article. Med 2015; 94: e443.
Ho et al (2020)	Lung cancer as outcome cannot be determined Ho L, Yang H, Chung C, et al. Increased risk of secondary lung cancer in patients with tuberculosis: A nationwide, population-based cohort study. PLoS One 2021; 16: e0250531.
Hoshuyama et al (1995)	Exposure of active TB cannot be determined Hoshuyama T, Pan G, Tanaka C, Feng Y, Yu L, Liu T, et al. Mortality of iron-steel workers in Anshan, China: A retrospective cohort study. int J Occup Environ Heal [Internet]. 2006;12(3 PG-193–202):193–202.
Hughes et al (2001)	Exposure of active TB cannot be determined Hughes J, McDonald A, McDonald J, RJ R, Shi R, Weill H. Cohort mortality study of North American industrial sand workers. II.Case-referent analysis of lung cancer and silicosis deaths. Ann Occup Hyg 2001; 45: 201–7.
Jo et al (2015)	Wrong study design Jo YS, Choi SM, Lee J, Park YS, Lee S-M, Yim J-J, et al. The relationship between chronic obstructive pulmonary disease and comorbidities: A cross-sectional study using data from KNHANES 2010-2012. Respir Med [Internet]. 2015;109(1 PG-96–104):96–104.
Kikuchi et al (2007)	Exposure of active TB cannot be determined Kikuchi S. Family history and mortality in the Japan Collaborative Cohort Study forEvaluation of Cancer (JACC). Asian Pac J Cancer Prev [Internet]. 2007;8 Suppl(PG-21-4):21–4.
Kinlen et al (1988)	Exposure of active TB cannot be determined Kinlen L, Willows A. Decline in the lung cancer hazard: a prospective study of the mortality of ironore miners in Cumbria. Br J Ind Med 1988; 45: 219–24.
Marsh et al (2017)	Exposure of active TB cannot be determined Marsh GM, Buchanich JM, Zimmerman S, Liu Y, Balmert LC, Esmen NA, et al. Mortality among Hardmetal Production Workers: US Cohort and Nested Case-Control Studies. J Occup Environ Med [Internet]. 2017;59(12 PG-306–326):e306–26.
Moshammer et al (2004)	Exposure of active TB cannot be determined Moshammer H, Neuberger M. Lung cancer and dust exposure: Results of a prospective cohort study following 3260 workers for 50 years. Occup Environ Med [Internet]. 2004;61(2 PG-157–162):157–62.
Ording et al (2018)	Exposure of active TB cannot be determined Ording AG, Veres K, Farkas DK, Adelborg K, Sørensen HT. Risk of cancer in patients with epistaxis and haemoptysis. Br J Cancer [Internet]. 2018;118(6 PG-913–919):913–9.
Pira et al (2017)	Exposure of active TB cannot be determined Pira E, Romano C, Donato F, Pelucchi C, Vecchia CL, Boffetta P. Mortality from cancer and other causes among Italian chrysotile asbestos miners. Occup Environ Med [Internet]. 2017;74(8 PG-558–563):558–63.
Rodescu et al (1981)	Wrong type of publication: Case reports or case series; Rodescu D, Abeles H, Zelefsky M, Henry Williams Jr. M. Accelerated growth of lung cancer in asociation with rifampicin administration for tuberculosis. Lancet [Internet]. 1981;318(8253 PG-983):983.
Saleh et al (2019)	Wrong study design Saleh P, Hosseini M-S, Piri R, Ghaffari M, Mohammadi S, Naghavi-Behzad M. Association of lung cancer and tuberculosis: A cross sectional study from northwest of Iran. Internat Jour Canc Manag [Internet]. 2019;12(6 PG-).

Schubauer-Berigan et al (2009)	Exposure of active TB cannot be determined Schubauer-Berigan MK, Daniels RD, Pinkerton LE. Radon exposure and mortality among white and American Indian uranium miners: An update of the Colorado Plateau cohort. Am J Epidemiol [Internet]. 2009;169(6 PG-718–730):718–30.
Shen et al (2021)	Wrong study design Shen B-J, Lin H-H. Time-dependent association between cancer and risk of tuberculosis: A population- based cohort study. Int J Infect Dis [Internet]. 2021;108(PG-340-346):340–6.
Shuldiner et al (2016)	Lung cancer as outcome cannot be determined Shuldiner J, Leventhal A, Chemtob D, Mor Z. Mortality after anti-tuberculosis treatment completion: Results of long-term follow-up. Int J Tuberc Lung Dis [Internet]. 2016;20(1 PG-43–48):43–8.
Su et al (2014)	Language other than English, French or Spanish Su M, Zhou B. Association of Genetic Polymorphisms in IL-6 and IL-1β gene with Risk of Lung Cancer in Female Non-Smokers. Chin J Lung Cancer [Internet]. 2014;17(8 PG-612–617):612–7.
Su et al (2016)	Exposure of active TB cannot be determined Su VY-F, Yen Y-F, Pan S-W, Chuang P-H, Feng J-Y, Chou K-T, et al. Latent tuberculosis infection and the risk of subsequent cancer. Medicine (Baltimore) [Internet]. 2016;95(4 PG-).
Tse et al (2014)	Data provided was not enough to extract or calculate a risk estimate Tse LA, Lin X, Li W, Qiu H, Chan CK, Wang F, et al. Smoking cessation sharply reduced lung cancer mortality in a historical cohort of 3185 Chinese silicotic workers from 1981 to 2014. Br J Cancer [Internet]. 2018;119(12 PG-1557–1562):1557–62.
Vento et al (2011)	Wrong type of publication: Comment Vento S, Lanzafame M. Tuberculosis and cancer: A complex and dangerous liaison. Lancet Oncol [Internet]. 2011;12(6 PG-520–522):520–2.
Wiwanitkit et al (2014)	Wrong type of publication: Letter to the editor Wiwanitkit S, Wiwanitkit V. Tuberculosis and lung cancer. South Asian J Cancer [Internet]. 2014;3(2 PG- 141):141.