Resumen:
Background: Congenital Trypanosoma cruzi infection accounts for an estimated 22% of new cases of Chagas disease in Latin America. However, neonatal diagnosis is challenging, as 9-month follow-up for immunoglobulin G testing is poor, quantitative polymerase chain reaction (qPCR) analysis is not routinely performed, and the micromethod misses ≥40% of congenital infections. Methods: Biorepository samples from new mothers and their infants from Piura, Peru, (an area of nonendemicity), and Santa Cruz, Bolivia (an area of endemicity) were accessed. Infant specimens were assessed using the micromethod, qPCR analysis, and a trypomastigote excretory secretory antigen (TESA) blot for detection of immunoglobulin M (IgM)-specific shed acute phase antigen (SAPA) bands, using qPCR as the gold standard. Results: When compared to qPCR, IgM TESA blot was both sensitive and specific for congenital Chagas disease diagnosis. Cumulative sensitivity (whether only 4 bands or all 6 bands were present) was 80% (95% confidence interval [CI], 59%-92%). Specificity was 94% (95% CI, 92%-96%) in the area of endemicity and 100% in the area of nonendemicity. SAPA bands occurred sequentially and in pairs, and parasite loads correlated highly with the number of SAPA bands present. The micromethod detected infection in fewer than half of infected infants. Conclusions: The IgM TESA blot for detection of SAPA bands is rapid, relatively inexpensive, and more sensitive than the micromethod and may be a useful point-of-care test for detection of congenital T. cruzi infection.